
Functional Dependency Generation and Applications
in pay-as-you-go data integration systems∗

Daisy Zhe Wang∗ , Luna Dong† , Anish Das Sarma‡ ,
Michael J. Franklin∗ , and Alon Halevy§

UC Berkeley and †AT&T Research and ‡Stanford University and §Google Inc.

ABSTRACT
Recently, the opportunity of extracting structured data from the
Web has been identified by a number of research projects. One
such example is that millions of relational-style HTML tables
can be extracted from the Web. Traditional data integration
approaches do not scale over such corpora with hundreds of small
tables in one domain. To solve this problem, previous work has
proposed pay-as-you-go data integration systems to provide, with
little up-front cost, base services over loosely-integrated informa-
tion. One key component of such systems, which has received
little attention to date, is the need for a framework to gauge
and improve the quality of the integration. We propose a frame-
work based on functional dependencies(FDs). Unlike in tradi-
tional database design, where FDs are specified as statements of
truth about all possible instances of the database; in web envi-
ronment, FDs are not specified over the data tables. Instead,
we generate FDs by counting-based algorithms over many data
sources, and extend the FDs with probabilities to capture the in-
herent uncertainties in them. Given these probabilistic FDs, we
show how to solve two problems to improve data and schema qual-
ity in a pay-as-you-go system: (1) pinpointing dirty data sources
and (2) normalizing large mediated schemas. We describe these
techniques and evaluate them over real-world data sets extracted
from the Web.

1. INTRODUCTION
Recently, a number of research projects [4, 2, 6] have iden-

tified the exciting opportunity to collect structured data
from the Web. For example, the WebTables project ex-
tracted millions of high-quality relational-style HTML tables
from web pages [4]. Another example is the use of informa-
tion extraction tools over web documents, which automat-
ically construct corpora with large numbers of structured
entities [2, 6]. As described in [16], traditional integration
systems do not scale over such corpora, because (1) hun-
dreds and thousands of data sources commonly exist for a
given domain; (2) the data tables are usually small and in-
complete; and (3) no one has control over all the sources.

One promising approach to solve the above problem is

∗This work was supported in part by the NSF under grant
NSF IIS-0415175.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

to use a pay-as-you-go data integration system [9], which
provides, with little up-front cost, base services over loosely-
integrated information. Such a system allows users, adminis-
trators, and programmers to focus their integration energies
on the most fruitful parts of the data given limited human
and machine resources. Previous work [16] has investigated
building a pay-as-you-go data integration system over many
structured data sources extracted from the Web. At the
heart of the challenge of designing a pay-as-you-go system
is the need for a framework to gauge and improve the qual-
ity of the information integration. However, little attention
has been paid to the development of such a framework.

In this paper, we propose one framework based on func-
tional dependencies (FDs) as a method for measuring and
improving the quality of integration. Traditionally, FDs
are statements of truth about all possible instances of the
database, and are provided top-down as part of the database
design process. They have been thoroughly researched and
applied to improving schema quality through normalization [5,
3, 13, 14, 17] and to improving data quality in data clean-
ing [7, 8, 10]. In contrast, a pay-as-you-go integration sys-
tem over a large corpus of tables extracted from the Web, do
not have up-front knowledge of the FDs and an integrated
view of the data must be created from bottom-up over many
diverse data sources. To address this problem, we generate
FDs from statistics over the data and extend the FDs with
probabilities to capture the inherent uncertainty of the FDs
learned in this manner.

The problem of automatic discovery of FDs from data
has been addressed in previous work [11, 12]. Our approach
is to extend the techniques such as TANE [11], which are
designed for and work well on single large data tables, to
handle corpus with many small data sources in one domain.
We develop the notion of probabilistic functional dependen-
cies (pFDs). Given a mediated schema and the mappings
from each source to the mediated schema, generated au-
tomatically [16], we describe counting-based algorithms for
deriving pFDs and their probabilities from the data in var-
ious sources. Given these pFDs, we show how to solve two
problems that arise in a pay-as-you-go integration system.

First, we show that the violation of pFDs by some data
sources can help pinpoint data sources with low quality data.
The types of dirtiness that can be discovered by checking
pFDs includes: attributes with dummy values, entity ambi-
guities, nested attributes and incorrect schema mappings.

Second, just as deterministic FDs are used in traditional
databases for schema normalization, we use the generated
pFDs to help normalize a large automatically generated me-

1

diated schema into relations that correspond to meaningful
real-world entities and relationships, to help users better
understand the underlying data.

In this paper we describe and evaluate the techniques we
developed for generating pFDs, and for discovering dirty
data sources and normalizing large mediated schema using
them. Our results show that these techniques obtain good
precision and recall in functional dependency generation and
obtain promising results for discovering dirty data sources
and normalizing mediated schemas.

2. GENERATING PROBABILISTIC FDS
This section introduces the key component of our solution:

probabilistic functional dependencies (pFDs). First, we for-
mally define pFDs, then we discuss how to generate them
from statistics on a set of data sources.

2.1 Definition
Functional dependencies (FDs) were originally developed

as part of Relational Database theory for improving the
quality of schemas. An FD X̄ → Ȳ indicates a relationship
between sets of attributes X̄ and Ȳ , such that any two enti-
ties that share a value for X̄ must also share a value for Ȳ .
FDs generalize the notion of a key in relational databases,
and as such, provide important semantic clues about data
consistency.

In a pay-as-you-go integration system, we cannot assume
domain knowledge of the FDs. One way to generate FDs
is by observing the data. However, the FDs we can infer
from the data are inherently uncertain because (1) FDs are
statements provided top-down as the truth over all data in-
stances, whereas FDs learned bottom-up from some data
instances might not hold in general; and (2) real-world data
sources are often dirty with missing values, inconsistent val-
ues, etc. We define probabilistic functional dependencies to
incorporate such uncertainty.

Definition 2.1. (Probabilistic Functional Depen-
dency (pFD)) Let R be a relation, X̄ be a set of attributes
in R, and A be an attribute in R. A probabilistic functional
dependency is denoted by X̄ →p A, where p is the likelihood
of X̄ → A being correct. A pFD is correct if it holds for all
the data instances in the domain. �

Next we describe how the probability of a pFD can be sta-
tistically computed from a set of data sources.

2.2 Computing probabilities
Single source: We first consider how to compute the prob-
ability of X̄ → A from a single source R. Ideally, if X̄ → A
holds, all tuples with the same value of X̄ should have the
same value of A. However, as we may have noisy data, there
can exist tuples whose A-value is different from that in the
majority of tuples with the same value for X̄. One way
to compute the probability of X̄ → A is: first compute the
fraction of such tuples for each distinct value of X̄, and then
compute the probability of X̄ → A using it. We call this
PerValue algorithm.

1. First, for each distinct non-null 1 value VX of X̄, we
find the non-null A-value VA that occurs in the max-
imum number of tuples with value VX for X. The

1None of the attribute values in X is NULL.

get-FDprob (R,X,A)
1 sort(R, {X,A})
2 c← t1(X); | π(X) |← 1; count(c)← 0
3 c′ ← t1(X,A); count(c′)← 0; sum← 0;maxCount(c)← 0
4 for each t ∈ R do
5 if t(X) == c then
6 count(c)← count(c) + 1
7 if t(X,A) == c′ then
8 count(c′)← count(c′) + 1
9 else
10 if maxCount(c) < count(c′) then
11 maxCount(c)← count(c′)
12 endif
13 c′ ← t(X,A); count(c′)← 0
14 endif
15 else
16 sum← sum+maxCount(c)/count(c)
17 c← t(X); | π(X) |←| π(X) | +1
18 count(c)← 0;maxCount(c)← 0
19 endif endfor
20 return sum

|πX |

Figure 1: The PerValue algorithm to compute the prob-

ability p of FD X̄ → A over a single source table R.

probability that X̄ → A holds for tuples with value
VX , denoted by Pr(X̄ → A, VX), is the fraction of tu-
ples with value VX and VA over all tuples with value
VX . Formally, let |VA, VX | be the number of tuples
with values VX for X̄ and VA for A, and |VX | be the
number of tuples with values VX for X̄ and non-null
value for A. We compute the probability as follows:

Pr(X̄ → A, VX) =
|VA, VX |
|VX |

. (1)

2. Second, we compute the probability of X̄ → A as the
average of probabilities of X̄ → A holding for each
distinct non-null value of X̄. Formally, let DX̄ be all
distinct values of X̄ in R and |DX̄ | be the size of DX̄ .
We define the probability of X̄ → A as

Pr(X̄ → A,R)PerValue =

∑
VX∈DX̄

Pr(X̄ → A, VX)

|DX̄ |
(2)

An alternative is to take the average of the probabilities
Pr(X̄ → A, VX) weighted by the frequency of each partic-
ular value of X̄; in other words, the probability of X̄ → A
on a value of X̄ that occurs often should affect our belief of
X̄ → A more than the probability on a less frequent value.
We call this the PerTuple algorithm. Using the same nota-
tion as above, the PerTuple probability can be computed
by:

Pr(X̄ → A,R)PerTuple =

∑
VX∈DX̄

|VA, VX |∑
VX∈DX̄

|VX |
(3)

We can compute the probability of a pFD in linear time
in the size of the data, by scanning the source data and
grouping by distinct X̄ values. The detailed algorithm for
PerValue is shown in Figure 1.

Multiple sources: When we have multiple data sources,
one approach to computing the probability of an FD is to
first merge data from different sources into one table, based
on the mediated schema and the schema mapping, and then
apply either the PerValue or the PerTuple algorithm.

2

AvgDom #Src
size

Keywords

name, one of job and title, and one ofPeople 45 63
organization, company and employer
author, title, year, andBib 619 48
one of journal and conference
one of course and class,

Course 545 57 one of instructor, teacher and lecturer,
and one of subject, department and title

Table 2: Characteristics of data sources in each domain

with the number of sources, the average size (number

of tuples) of the source tables, and the keywords that

identify the domain.

We call this approach MergeData. This approach can sig-
nificantly enrich the data upon which we generate the pFDs
to avoid being biased by small source tables with incom-
plete information. However, it also introduces noise because
the same entity can have different presentations in differ-
ent sources, and because the effect of an incorrect schema
mapping gets amplified with big source tables.

An alternative approach is to compute the probability an
FD by first computing the probability of this FD on each
source and then merging them over the mediated schema us-
ing the schema mapping. We call this approach MergeFD.
Specifically, our computation is based on a single-table me-
diated schema M and a set of mappings between M and the
source schemas. Consider an FD X̄ → A on M and let S̄ be
a set of data sources in which each attribute in X̄ and A is
mapped to a distinct attribute. We compute the probability
of X̄ → A on each source schema in S̄ and take the average
as the resulting probability:

Pr(X̄ → A, S̄)MergeFD =
∑
R∈S̄

Pr(X̄ → A,R) (4)

For simplicity, we restrict ourselves to FDs with only a
single attribute on each side, denoted as X → A, for the rest
of this paper. Similar techniques as in [11] can be applied
to compute FDs with multiple attributes efficiently.

2.3 Experiments
In order to evaluate the techniques we developed for gen-

erating pFDs over corpus with many data sources, we imple-
mented the two algorithms, PerValue and PerTuple, for
computing the probabilities of FDs over a single data source,
and the MergeData and MergeFD approaches for com-
bining either data or pFDs over multiple data sources. In
this section, we compare the four possible ways to generate
probabilistic FDs over three real datasets with many data
sources.

Setup: First, we created the single-table mediated schema
and the schema mappings for each of the three domains as
would be automatically generated by [16]. Then we used the
pFD generation algorithms to generate pFDs over the me-
diated schemas where both sides contain a single attribute.
We implemented all the algorithms in Java along with Derby
DBMS [1].

Each dataset is a set of HTML tables extracted from the
Web. We considered tables from three domains: Business-
Contact(People), Bibliography(Bib) and Course. For each do-
main, we identified tables in this domain by searching for
tables that contain certain keywords in the attribute labels
(see Table 2). The number of tables per domain varies from
45 to 619. The number of tuples in each source table varies

from 6 to 1123, and on average is 53. Each mediated schema
contains 11 to 14 attributes.

For each pFD generation algorithm, we took the set of
FDs whose computed probability is above threshold τ = 0.8
and compared it with a golden standard generated manually
by the authors from their domain knowledge. We reported
precision, recall and f-measure. Let DG be the set of FDs
in the golden standard and DR be the set of automatically

generated FDs. Then, precision is defined as P = |DG∪DR|
|DR|

,

recall is defined as R = |DG∪DR|
|DG|

, and F-measure is com-

puted as F = 2PR
P+R

.

Results: Figure 2 shows the precision, recall and f-measure
results of the pFDs generated by four different pFD genera-
tion algorithms – MergeFD-PerTuple, MergeFD-PerValue,
MergeData-PerTuple and MergeData-PerValue.

As can be seen, in these experiments, the MergeFD-
PerTuple algorithm generates the set of pFDs with the
highest f-measure across all three domains. The results also
show that the PerTuple algorithms usually outperform the
PerValue algorithms. This is because by taking into ac-
count the frequency of each value of X, the per-tuple model
is more suitable for data sets where the low quality of data is
mainly caused by dirty values, which is the case in our three
data sets. In addition, the MergeFD approach performs
better than MergeData approach. This is because merg-
ing data from heterogenous sources introduces more noise
and inconsistencies.

Table 1 shows for each domain, the number of gener-
ated functional dependencies that have probability above
0.8, and some examples among those generated pFDs. As
can be seen, the number of pFDs automatically generated
by the MergeFD-PerTuple algorithm is between 34 and
42, which is hard to generate all manually. Moreover, the
sample pFDs show that useful pFDs are generated which
capture the quality and characteristics of the data.

Lastly, we also ran experiments to test the sensitivity of
the setting of the threshold τ . The results not shown here,
indicate that the f-measure of the generated pFDs is rather
stable when varying the threshold between 0.5 and 0.95 for
these three domains.

3. APPLICATIONS OF PROBABILISTIC FDS
In this section we use pFDs to solve two problems that

arise in pay-as-you-go systems. The first problem is data
cleaning, where dirty data sources are discovered by validat-
ing pFDs. The second problem is improving the mediated
schema, by normalizing into multiple schemas, each repre-
senting an entity or a relationship in the domain.

3.1 Data Cleaning
It is well known that FDs can be used as quality con-

straints in databases. In a pay-as-you-go data integration
system, pFDs generated from the data sources can help pin-
point low quality data sources.

Given a set of high probability pFDs F̄ over the mediated
schema, a data source R and a mapping from the source to
the mediated schema, we report on the data sources that vi-
olate one or more pFDs in F̄ . The violation of dependencies
can be caused by one of the following types of dirtiness in
data: (1) dummy or default values (e.g., the value ’Email’
throughout email column) ; (2) entity ambiguities (e.g., two
different values referring to the same entity), and (3) nested

3

0.8
1

F‐measure
MergeFD‐
PerTuple 0.8

1
precision

0.8
1

recall

0
0.2
0.4
0.6

people course bib

p
MergeFD‐
PerValue
MergeData‐
PerTuple
MergeData‐
PerValue

0
0.2
0.4
0.6

people course bib

0
0.2
0.4
0.6

people course bibpeop e cou se b b people course bib p p

Figure 2: F-measure, Precision and Recall of different pFD generation algorithms.

Domain Num pFDs generated Example generated pFDs
people 42 name→ organization, organization→ address, email→ name, fax→ address

bib 34 journal→ issn, issn→ eissn, title→ journal, journal→ subject, title→ authors
course 35 class→ course, class→ days, course→ units, title→ course, instructor→ institution

Table 1: Number of generated pFDs (MergeFD-PerTuple) and Example generated pFDs.

columns (e.g., course section and title are mixed together in
one column). In addition, violations can also be caused by
incorrect schema mappings.

To generate the set of high probability pFDs F̄ , we take
the pFDs generated from the MergeFD-PerTuple algo-
rithm and threshold the probability at τ = 0.82. For each
pFD X → A in F̄ , exists a set of data sources S̄ where
for every data source R ∈ S̄, every attribute in X and A
distinctly maps to an attribute in R. We compute the prob-
ability p of X → A over R; if p < τ then we report the data
source R as it violates the pFD X → A in F̄ .

Results:
The results are promising for data cleaning using pFDs.

Table 3 shows the number of data sources violating the
pFDs we generated using the MergeFD-PerTuple algo-
rithm over three domains. We looked at all the violating
data sources and report the number of dirty ones among
those, including the breakdown among the four types of dirt-
iness, either in data or in schema mapping. A data source
R is considered dirty if it (1) contains at least one column
with only dummy values; (2) contains at least one column
with half or more values that has entity ambiguity; (3) con-
tains at least one column with values from more than one
attributes; and (4) contains at least one column which maps
to a wrong attribute in the mediated schema.

For the people, course and bib domains, we discovered 5,
80 and 7 dirty sources respectively. Some of the clean data
sources are mistakenly reported because the violated pFDs
do not generally hold, for example ’class→ instructor’ in the
course domain and ’authors→ title’ in the bib domain. The
fraction of dirty sources in the reported data sources (i.e.
precision) is 100%, 38% and 43% respectively.

In addition, we randomly sampled 45–50 data sources each
from the three data sets, and checked if they are dirty ac-
cording to the above criteria. The fraction of dirty data
sources in the sample, is used to estimate the number of
dirty sources over each entire data set. For example, in
course domain, 11 sources are found dirty in 50-source sam-
ple, thus, we estimate that the whole data set have 66 dirty
sources among 545 sources. As we can see from Table 3, the
estimated number of dirty sources are 5, 66 and 0 respec-
tively. We compute the percentage of dirty sources discov-

2As described in Section2.3, the setting of the threshold is rather
stable between 0.5 and 0.95.

ered using pFDs (i.e. recall) as the number of dirty sources
found violating pFDs over the estimated numbers of dirty
data sources, which is 100% (5/5), 47% (31/66) and 100%
(3/0) respectively.

3.2 Schema Normalization
In a pay-as-you-go integration system, an automatically

generated mediated schema can be large and hard to digest.
The resulting schema often is too big to be presented as a
single schema [16]. Another use of pFDs is to analyze the
mediated schema and improve it to represent the objects
and relationships over data.

Typically, a relation is normalized by finding FDs that
violate the BCNF or 3NF normal form and splitting the re-
lation accordingly. However, directly applying such normal-
ization is inadequate in our context for two reasons. First,
the set of generated pFDs has imperfect precision and re-
call as shown in results in Section 2.3. Second, our goal of
normalization is to identify objects and relationships. If not
done carefully, BCNF normalization can separate attributes
of one entity into several relations.

This section discusses how we solve these problems and
achieve the goal of semantic normalization. Throughout this
section, we use the following example to illustrate our ap-
proach.

Example 3.1. Consider the following mediated schema
that is automatically generated from a set of source schemas.

Business-contact(name, email, title, organization, address,
city, state, zip, country)

Figure 3 shows pFDs over this mediated schema. If we
consider the pFDs with a probability of no less than .9 as
deterministic and apply BCNF normalization, we can obtain
several valid normalization results, one of which is:

Business-contact(name, email, organization)
Org(organization, address, zip, country, title)
Addr(address, city)
City(city, state)

This result has several problems. First, organization →
title, address → city and city → state do not hold in general
so the result schema is imprecise: it incorrectly groups title
with attributes for organization and can fail in representing
cities with the same name but in different states. Second,

4

Domain # Sources Found Dirty Sources Frac. Dirty Sources # Sources Dirty Sources Percentage
(Violating pFDs) In Found Sources In Found Sources Sampled /Total In Sampled Sources Discovered

(Breakdown) (Precision) Est. # (Breakdown) (Recall)
People 5 5 (5, 0, 0, 0) 100% 45/45 5 (5, 0, 0, 0) 100%
Course 80 31 (0, 15, 13, 3) 38% 50/545 66 (0, 22, 33, 11) 47%

Bib 7 3 (0, 3, 0, 0) 43% 50/618 0 (0, 0, 0, 0) 100%

Table 3: Results for data cleaning application using pFDs with type-of-dirtiness breakdown.

Domain Mediated Schema Normalized Schemas
People (organization, name, country, work phone, zip, city Organization(organization, country, zip, city, address, fax)

address, fax, title, email, state) People(name, work phone, title, organization, email, state)
Course (catalog number, class number, section, units, Course(catalog number, location, subject, units,

location, subject, fee, time, title, instructor class number, fee, institution)
days, institution, catalog number, term) Class(class number, section, time, title, instructor, days,

catalog number, term)
Bib (journal title, title, id, subject, source, eissn Journal(journal title, issn, subject, source, eissn)

authors, volumne, years, issue, issn) Article(title, id, authors, volumne, years, issue)

Table 4: Results for mediated schema normalization application using pFDs.

Figure 3: Example 3.1: pFDs for a given mediated

schema of the people domain. To avoid cluttering the

graph, we omit pFDs whose probabilities are below .9;

we also omit most of the pFDs from name or email to other

attributes, whose probabilities range from .95 to 1.

address, city, state, zip, country are all attributes that describe
addresses; splitting them into several relations is not desired.
�

Selecting pFDs As shown in the above example, a naive
way of normalization is to generate all pFDs, prune some
of them by applying a threshold, consider the remaining
ones as deterministic, and apply normalization accordingly.
However, the set of generated pFDs may have missing or
wrong pFDs as shown in results in Section 2.3. We thus do
a further pruning according to the following heuristic.

Heuristic 3.2. Each non-key attribute must belong to
one and only one entity or relationship. �

Following this heuristic, for each attribute A we only need
to select one pFD that contains A on the right-hand side;
other pFDs either can be implied by transitivity, or are un-
likely to be correct. We thus prune pFDs as follows. Let η
be the threshold for pFDs that are considered likely to be
true and δ be the maximum difference between two selected

pFDs with A on the right-hand side. We prune a pFD
X →p A if one of the following three conditions holds.

• p < η;

• Let pmax = maxY (Pr(Y → A)), pmax − p > δ;

• ∃Y such that Y →p′ A, p′ > pmax−p, and ∃{Z1, . . . , Zl}, l >
1, such that each of X → Z1, . . . , Zl → Y has a prob-
ability above η.

Consider Example 3.1. If we set η = 0.9 and δ = 0.05, we
prune pFDs not in the graph and also pFDs organization→title,
organization→state, address→state, and city→state.

Avoiding oversplitting After the pruning, we consider
the remaining pFDs as deterministic. Rather than apply-
ing BCNF normalization, we apply a dependency-preserving
3NF normalization, such that each attribute will remain in
the same relation as the attribute that represents the key of
its object [15].

The normalization requires recognizing keys of the schema.
We consider an attribute K as a key if it is not determined
by any other attribute, or if it is determined by K′, but
there is also an FD K → K′.

Note that strictly following 3NF normalization can gen-
erate relations with only a few attributes. To avoid over-
splitting, we examine each table T with no more than k (a
pre-defined threshold) attributes; if there exists a table with
the key of T , we merge T with that table.

Continuing Example 3.1: After we apply pruning, a dependency-
preserving 3NF normalization obtains the following rela-
tions.

Business-contact(name, email, title, organization)
Org(organization, address, zip, country)
Addr(address, city)
Zip(zip, state)

If we set k = 2, we merge the last three tables into one
and obtain the following results, effectively identifying two
entities in the domain.

Business-contact(name, email, title, organization)
Org(organization, address, city, state, zip, country)

5

Normalization (Med)
1 rels← {Med};
2 // Generate pFDs with single attribute on each side
3 pFDs← GeneratePFDs(Med);
4 // Find key of the relation
5 keys← FindKeys(Med, pFDs);
6 // Apply Heuristic3.2 to prune pFDs
7 pFDs← PrunePFDs(pFDs);
8 // 3NF Normalization
9 for each D : X̄ → A ∈ pFDs do
10 if X̄ 6∈ keys then
11 // Normalize rels according to D;
12 rels← 3NFNorm(rels,D);
13 endif endfor
14 // Avoid oversplitting
15 rels←Merge(rels, k);
16 return rels;

Figure 4: Algorithm Normalization: normalize a medi-

ated schema using generated pFDs.

Figure 4 gives the complete algorithm for mediated schema
normalization.

Results:
Table 4 shows results of Normalization over the medi-

ated schema of each domain. The mediated schema of each
domain is a single-table schema created as would be pro-
duced by an automated algorithm such as [16]. As shown in
the table, the mediated schema of people, bib and course do-
main have 11, 11 and 14 attributes respectively. After apply-
ing the normalization algorithm, with parameters η = 0.8,
δ = 0.05 and k = 2, each mediated schema is normalized
into two meaningful entities in the domain. In the people do-
main, the two entities are person and organization; in the bib
domain, the two entities are journal and article(paper); and
in the course domain, the two entities are course and class
offerings. As we can see, although not perfect (for example,
’fax’ attribute should be in the People instead of the Orga-
nization table), the schema normalization algorithm can do
a reasonable job in normalizing a wide mediated schema to
multiple schemas, each representing a real-world entity.

4. RELATED WORK
The idea of deriving functional dependencies from data

has been proposed in TANE [11] and CORDS [12], and they
call the functional dependencies they generate approximate
FDs or soft FDs. The concept and the algorithms are very
close to our probabilistic functional dependencies and the
PerTuple model over single data source.

Recently, there has been work on discovering conditional
functional dependencies from data [10, 7]. However, such de-
pendencies most likely to exist in large, complex databases,
but very rarely in the corpus with small data sources, which
we are focusing on.

Some previous work [7, 8, 10] focused on using functional
dependencies or conditional functional dependencies gen-
erated over a single large database to discover dirty data
items. None of the past literatures explores dataset with
many small data tables and apply functional dependencies
over the domain to discover dirty data sources.

A large body of work [5, 3, 13, 14, 17] on creation of
mediated schemas focused on semi-automatically merging
schemas to create a mediated schema, where ambiguity needs
to be resolved by users. Das Sarma et al. [16] proposed

automatically generating a probabilistic mediated schema
from source schemas and then consolidating them to pro-
vide one single-table mediated schema; however, the medi-
ated schema is not normalized. Moreover, our normalization
aims at normalizing the mediated schema into relations de-
scribing objects and relationships.

5. CONCLUSION
In this paper we show how to extend TANE algorithm

over single table to generate probabilistic functional depen-
dencies from data corpus with hundreds of small, dirty and
incomplete data tables in one domain. We show how to use
generated dependencies to measure and improve the qual-
ity of schema and data, by dirty data source discovery and
mediated schema normalization. The experiments over real
data sets show promising results. Future work includes how
to automatically adjust the parameters in the algorithms.

6. REFERENCES
[1] Apache derby.
[2] E. Arichtein, L. Gravano, V. Sokolovna, and

A.Voskoboynik. Snowball: A prototype system for
extracting relations from large text collections. In
SIGMOD, 2001.

[3] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative
analysis of methodologies for database schema integration.
In ACM Computing Surveys, pages 323–364, 1986.

[4] M. J. Cafarella, A. Halevy, D. Zhe Wang, Y. Zhang, and
E. Wu. Webtables: Exploring the power of tables on the
web. In Proc. of VLDB, 2008.

[5] L. Chiticariu, M. A. Hernandez, P. G. Kolaitis, and
L. Popa. Semi-automatic schema integration in clio. In
Proc. of VLDB, 07. Demonstration description.

[6] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu,
T. Shaked, S. Soderland, D. Weld, and A. Yates. Web-scale
information extraction in knowitall (preliminary results). In
WWW, 2004.

[7] W. Fan, F. Geerts, M. Xiong, and L. V.S. Lakshmanan.
Discovering conditional functional dependencies. In Proc. of
ICDE, 2009.

[8] Wenfei Fan. Dependencies revisited for improving data
quality. In PODS, pages 159–170, 2008.

[9] M. Franklin, A. Halevy, and D. Maier. From databases to
dataspaces: a new abstraction for information
management. SIGMOD Rec.

[10] L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yu.
On generating near-optimal tableaux for conditional
functional dependencies. In Proc. of VLDB, 2008.

[11] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen.
TANE: An efficient algorithm for discovering functional
and approximate dependencies. The Computer Journal,
42(2):100–111, 1999.

[12] I. F. Ilyas, V. Markl, P. J. Haas, P. G. Brown, and
A. Aboulnaga. Cords: Automatic generation of correlation
statistics in db2. In Proc. of VLDB, 2004.

[13] R. J. Miller, Y. Ioannidis, and R. Ramakrishnan. The use
of information capacity in schema integration and
translation. In Proc. of VLDB, 1993.

[14] R. Pottinger and P. Bernstein. Creating a mediated schema
based on initial correspondences. In IEEE Data Eng.
Bulletin, pages 26–31, Sept 2002.

[15] R. Ramakrishnan and J. Gehrke. Database management
systems. McGraw-Hill, 2003.

[16] A. Das Sarma, X. Dong, and A. Halevy. Bootstrapping
pay-as-you-go data integration systems. In Proc. of ACM
SIGMOD, 2008.

[17] J. Smith, P. Bernstein, U. Dayal, N. Goodman, T. Landers,
K. Lin, and E. Wong. Multibase integrating heterogenous
distributed database systems. In Proc. of AFIPS, 1981.

6

