
Efficient and Scalable Sequence-Based XML Filtering

Mariam Salloum
University of California,

Riverside, CA 92521, USA
msalloum@cs.ucr.edu

Vassilis J. Tsotras
University of California,

Riverside, CA 92521, USA
tsotras@cs.ucr.edu

ABSTRACT
The ubiquitous adoption of XML as the standard of data
exchange over the web has led to increased interest in building
efficient and scalable XML publish-subscribe (pub-sub)
systems. The central function of an XML-based pub-sub system
is to perform XML filtering efficiently, i.e. identify those XPath
expressions that have a match in a streaming XML document.
In this paper, we propose a new sequence-based approach,
which transforms both XML documents and XPath twig
expressions into Node Encoded Tree Sequences (NETS). In
terms of this encoding, we provide a necessary and sufficient
condition for an XPath twig to represent a match in a given
XML document. The proposed filtering procedure is based on a
new subsequence matching algorithm devised for NETS, which
identifies the set of matched queries free of false positives with
a single scan of the XML document. Extensive experimental
results show that the NETS method outperforms previous XML
filtering approaches.

1. INTRODUCTION
 With the increased adoption of XML as the de facto standard
for publishing and exchanging of information over the web,
XML-based pub-sub systems have emerged. In a typical XML-
based pub-sub system, users (subscribers) express their
interests (profiles) using XML query languages (such as XPath
[3]), while publishers distribute their messages encoded as
XML documents. Each published message is matched against
user queries so that messages are only delivered to interested
users. Several approaches have been proposed to solve the
XML filtering problem; the main two categories are (i) FSM-
based and (ii) Sequence-based approaches.
 Several Finite State Automata approaches have been
proposed. An early work, XFilter [1], considered simple path
profiles and proposed building an FSM for each distinct profile.
The FSM states are then traversed, while XML tag events are
generated by the parsing of the streaming document. YFilter [4]
[5] was a successor of XFilter and proposed building a NFA
representation that combines all user profiles into a single
machine. This approach yields better results since it exploits
the commonality among path expressions. In order to
implement twig filtering, FSM-based approaches typically
break twig queries into their simple linear paths. This approach
however, requires an expensive post-processing phase to join
the results.

Copyright is held by the author/owner.
Twelfth International Workshop on the Web and Databases (WebDB
2009), June 28, 2009, Providence, Rhode Island, USA.

 In the sequence-based approaches [2][7], the XML document
and profile twigs are transformed into sequences. FiST [7] was
the first to propose a sequence-based XML filtering system
using Prufer sequence encoding. This approach was shown to
be more efficient than automata-based approaches since whole
twig profiles are processed at once. Nevertheless, subsequence
matching could create false positives and thus a post-processing
phase is required to filter them. XFIS [2] is another Prufer-like
sequence encoding of XML documents and profile twigs,
however it does not account for tag recursion in the XML data.
 In this paper, we propose a new sequence-based approach to
solve the XML filtering problem. The key contributions of this
paper can be summarized as follows:
 We present a new, simple and effective sequence

representation for XML documents and query twig patterns,
called NETS (Node Encoded Tree Sequence).

 Using NETS, we present a necessary and sufficient condition
for a twig profile to match a given XML document tree.

 We present a filtering system for ordered twig pattern
matching that employs concurrent subsequence matching of
query profiles. Our filtering approach is unique since it does
not require a post-refinement phase. The approach
guarantees that returned matches are free of false positives
(and false negatives) with a single scan of the XML
document.

 Experimental results show that the proposed approach
outperforms previous XML filtering approaches.
Performance improvements are achieved through holistic
processing of twig patterns and on-the-fly detection of false
matches.

 We proceed with the description of the NETS encoding in
Section 2. In Section 3 we provide the details of our filtering
system. Section 4 presents experimental results while
conclusions appear in Section 5.

2. NODE ENCODED TREE SEQUENCE
 An XML document is modeled as a rooted ordered labeled
tree where each node corresponds to an element tag, attribute,
or value, and edges represent structural relationships between
nodes. Several sequence representations for labeled trees have
been proposed and utilized for XML filtering or query matching
[8][10][11]. We present a simple yet efficient sequence
representation for XML trees called Node Encoded Tree
Sequence (NETS).
 For each node in a given tree, the NETS of the tree contains
two symbols referred to as ‘start-symbol’ and ‘end-symbol.’ For
example, given a tree T with a node labeled x, the NETS(T)
will contain the start-symbol ‘Sx’ and end-symbol ‘Ex’ for node
labeled x. The Node Encoded Tree Sequence of T, NETS(T), is
defined recursively as follows. An example of a XML tree T
and its corresponding NETS is shown in Figure 1(a).

Definition 1 (Node Encoded Tree Sequence):
1. If tree T consists of a single node labeled by r, then the

NETS(T) is Sr Er.
2. Let r be the root of tree T and assume r has m children

labeled from left-to-right as r1, r2 ,…, rm. Let sequences S1, S2,
…, Sm be the NETS of the subtrees whose roots are r1, r2, …,
rm, respectively. Then the NETS(T) is Sr S1 S2 … Sm Er.

a

b b

c g

a

b

gc

a

d

bb

d gc k

Q1: /a/b[c]/g Q2: /a[b/c]/b//g

(a) (c)(b)
XML Tree T

NETS(T) = Sa Sb Sc Ec Sd Ed Eb Sb Sd Ed Sg Eg Sk Ek Eb Ea
NETS(Q1) = Sa Sb Sc Ec Sg Eg Eb Ea
NETS(Q2) = Sa Sb Sc Ec Eb Sb Sg Eg Eb Ea

Figure 1: NETS Representation of XML Tree and Query Twigs

 An XPath query expression can also be modeled as a labeled
tree (referred to as a query twig) where each node represents an
element or value, and edges denote parent-child (‘/’) or
ancestor-descendant (‘//’) relationships (see Figure 1(b)(c)).
The NETS of a query twig is generated in accordance to
Definition 1. Note, when generating NETS of a twig query no
distinction is made between parent-child and ancestor-
descendant edges in the tree. In Section 3.1, we associate
additional attributes to the NETS sequence nodes to encode ‘/’,
‘//’, and ‘*’.
 We note that NETS is essentially equivalent to SAX tokens,
thus it has several properties. For a given label, x, the NETS
must have an equal number of start-symbols (Sx) and end-
symbols (Ex). For every two nodes in the tree with labels x and
y, the corresponding segments Sx….Ex and Sy…Ey in the
sequence are either disjoint or nested. The start and end
symbols of the same node are called corresponding symbols. If
a node is labeled by x, the preorder of the corresponding
symbols Sx and Ex are defined as
preorder(Sx)=preorder(Ex)=preorder(x). Hence, any two start
and end symbols in the NETS are said to be corresponding
symbols if they have the same preorder number.
 The objective of the filtering algorithm is to determine
whether a given query twig has a ‘match’ in a XML tree. For a
query to be a match, the query twig must be a subgraph
(Definition 2) of the XML tree and satisfy the ‘level-consistent’
property (Definition 3), which we formally define as follows:
Definition 2 (Subgraph): Let T=(V,E) be a labeled tree, where
V is the set of all nodes in T and E is the set of all edges in T.
For every node n in V, let label(n) denote the label of n and let
preorder(n) denote the number associated with the node based
on the tree preorder traversal. A labeled tree Q=(V’,E’) is a
subgraph of T if the following two conditions hold: (1) There is
a one-to-one mapping f() from V’ into V such that for every
node n in V’ label(n)=label(f(n)), and for every edge (n1,n2) in
E’ there is a path from f(n1) to f(n2) in T. (2) For every two
nodes n1 and n2 in Q, if preorder(n1) < preorder(n2) then
preorder(f(n1)) < preorder(f(n2)). While (1) guarantees that
ancestor-descendent relationships in Q are 'found' in T, (2)
guarantees that the relative order of nodes in Q corresponds to
the one in T.
Definition 3 (Level-Consistent): Let Q be a query and
subgraph of an XML tree T, and let level(m) denote the level of
a node m in T. A query Q satisfies the ‘level-consistent’
property iff the following condition holds: For every edge (n1,n2)

NEST(Q1):

NEST(T): Sa Sb Sc Ec Sd Ed Eb Sb Sd Ed Sg Eg Sk Ek Eb Ea

Sa Sb Sc Ec Sg Eg Eb Ea

0 1 2 2 3 3 1 4 5 5 6 6 7 7 4 0

Sa Sb Sc Ec Sd Ed Eb Sb Sd Ed Sg Eg Sk Ek Eb Ea

Sa Sb Sc Ec Eb Sb Sg Eg Eb Ea

0 1 2 2 3 3 1 4 5 5 6 6 7 7 4 0
NEST(T):

NEST(Q2):

Figure 2: Q1 is a False Match and Q2 is a Match

in Q, if the edge is of type ‘//’, then level(f(n1))–level(f(n2)) ≥ 1.
Otherwise, if (n1,n2) is of type ‘/’, then level(f(n1)) – level(f(n2))
= 1, where n1 and n2 denote nodes in Q and f is one-to-one
mapping as described in Definition 2. Note, the root is assigned
a level of zero, the root’s children are assigned a level of one,
e.t.
 The filtering algorithm involves subsequence matching
between the NETS sequences of the twig profile and the
document, to determine if there is a match. The following
theorem states the relation between the query twig and XML
tree and their sequence representation.
Theorem 1: Given two rooted labeled trees T and Q, if Q has a
match in T then the NETS(Q) is a subsequence of NETS(T).
Proof: Since Q has a match in T, Q is a subgraph and
consequently there is a one-to-one mapping f from the nodes in
V’ into the nodes of V such that the label(n) = label(f(n)) for
every node n in V’ and satisfies other properties of Definition 2.
Thus, each start-symbol and end-symbol in NETS(Q) must
appear in NETS(T), but we need to prove that occurrence of
these symbols appear in the same order in both NETS(Q) and
NETS(T). Two cases are considered for every two nodes n1 and
n2 in Q, whose corresponding start and end symbols are (Sx,Ex)
and (Sy,Ey), respectively.
Case 1: There is a path from n1 to n2 in Q.
Thus, the segment Sx…Ex in NETS(Q) must contain the segment
Sy…Ey such that the order of the symbols in NETS(Q) is
Sx..Sy..Ey..Ex. Since f(n1) and f(n2) have the same symbols as that of
n1 and n2 and there is a path from f(n1) and f(n2) in T, then the order
of the start and end labels of f(n1) and f(n2) in NETS(T) is also Sx…
Sy…Ey..Ex.
Case 2: No path exists between n1 and n2.
Since there is no path between nodes n1 and n2, then the segment
Sx…Ex and Sy…Ey in NETS(Q) must be disjoint. Thus, the order of
the symbols in NETS(Q) is either Sx…Ex…Sy…Ey or Sy…Sy…
Sx…Ex depending on the preorder number of nodes n1 and n2. Since
Q is a subgraph of T, the preorder(n1) < preorder(n2) iff
preorder(f(n)) < preorder(f(n2)), consequently, the symbols in
NETS(T) must appear in the same order.

 Given trees Q and T, if we enumerate all possible
subsequences of NETS(T) that match NETS(Q), then we are
guaranteed to report all matches with no false dismissals.
However, we note that the result may contain false positives.
Consider the XML tree T and query twigs Q1 and Q2 shown in
Figure 1. Figure 2 shows the NETS of T, Q1 and Q2. The
NETS(Q1) and NETS(Q2) are both subsequences of the
NETS(T). However, we note that Q1 is a false match because it
is not a subgraph of tree T. As we proceed, we shall prove a
necessary and sufficient condition for a query to have a match
in a given XML document.
Definition 4 (Tree Subsequence): Let T be a NETS labeled
tree. A subsequence S of NETS(T) is called a tree subsequence
if the following two conditions hold:

1. If Sx(Ex) is in S, then the corresponding symbol Ex(Sx) is
also in S, i.e. if Sx(Ex) is in S then the Ex(Sx) with the same
preorder number is also in S.

2. S = Sr … Er, where Sr and Er are corresponding symbols.

 Reconsider the XML tree and query twigs shown in Figure 1.
The XML tree nodes are numbered with a preorder traversal of
the tree so that each node has a unique number (See Figure 2).
When NETS(Q1) is matched with NETS(T), we note the
matched subsequence is not a tree subsequence and hence Q1 is
not reported as a match. The matched subsequence for Q2 is a
tree subsequence and hence Q2 is reported as a match.
Definition 5 (Level of Start and End Symbols): Given two
rooted labeled trees Q and T, let T be a tree and x be a node in
T. The Level(Sx) = Level(Ex) = Level(x), where Sx and Ex are
the corresponding start and end labels of x.
Theorem 2: Given two rooted labeled trees Q and T, Q has a
match in T iff there is a tree subsequence S of NETS(T) such
that:
1. S = NETS(Q)

2. For every edge (n1,n2) in Q the following property holds:
If (n1,n2) is of type ‘/’, then the level(Sy) - level(Sx) = 1,
If (n1,n2) is of type ‘//’, then the level(Sy) - level(Sx) ≥ 1, where n1

and n2 are labeled tree nodes in Q and Sx and Sy are the
corresponding start symbols in S.

Proof: Necessary Condition - Assume that query Q has a
match in XML document T. By Theorem 1, NETS(Q) is a
subsequence of NETS(T). Let S be a subsequence of NETS(T)
that corresponds to NETS(Q). Since there is a one-to-one
mapping f from the nodes of Q into the nodes of T that satisfies
the properties stated in the definition of subgraph, then S
satisfies the properties of tree subsequence. Also, since query Q
has a match in T, then Q satisfies the level-consistent property.
It is easy to show that the second condition of Theorem 2
follows from the level-consistent property.
Sufficient Condition - Let Q be a query such that there is a tree
subsequence S of NETS(T) that satisfies the two conditions of
Theorem 2. To prove that Q has a match in T, we first prove
that Q is a subgraph of T, i.e. we define a 1-1 mapping f from
the nodes of Q into the nodes of T, which satisfies the
properties stated in the subgraph definition. Let n be a node of
Q with label x. The mapping f(n) is defined as follows:
Since S=NETS(Q), the start and end symbols of node n must appear
in S. As we progress, we will show that these two symbols in S are
the start and symbols of the same node in T (i.e. they are not symbols
of different nodes in T). This node of T will be denoted as f(n). Two
cases need to be considered:
Case 1: There is only node of Q with label x.
Thus, tree subsequence S contains only one Sx and one Ex and
they must be the start and end symbols of the same node in T,
because they have the same preorder number.
Case 2: There is more than one node in Q with label x. Without
loss of generality, we assume that there are only two nodes (n
and m) of Q with label x and preorder(n) < preorder(m). Thus,
the symbols of n and m in NETS(Q) must appear in the
following order:

Sx … Ex … Sx … Ex

n n m m

Sx … Ex … Sx … Ex

n m m n

or

Since S=NETS(Q), these symbols also appear in S. Since S is a
tree subsequence, then there are only two Sx and two Ex in S
and they must appear in the same order as above. These
symbols correspond to the two nodes in T denoted by Tm and Tn.

We will prove by contradiction that the Sx and Ex of node n in
Q correspond to either the Sx and Ex of Tm or the Sx and Ex of
Tn. Suppose that Sx and Ex of n corresponds to the Sx of Tn and
Ex of Tm, respectively as shown below:

Sx … Ex … Sx … Ex

Tn Tm Tm Tn

Sx … Ex … Sx … Ex

Tn Tm Tn Tm

or

The first case can be excluded because the sequence is not a
valid NETS, since the Ex proceeds its corresponding Sx in the
NETS. The second case can also be excluded because the
property of NETS requires that the segment Sx….Ex and Sx…
Ex of nodes Tm and Tn must either be disjoint or nested. In this
case, the two segments overlap and thus it’s not a possible
NETS. Thus, Sx and Ex of n in Q correspond to the Sx and Ex
of the same node f(n) in T. It is easy to verify that f(n) satisfies
the two properties stated in the subgraph definition. Thus, Q is
a subgraph of T. The second condition of Theorem 2 can be
used to verify that Q satisfies the level consistency property; as
a result, Q is a match of T.

3. FILTERING SYSTEM
 In this section, we first describe how to encode wildcards, ‘/’
and ‘//’ for the query twig NETS. We proceed to describe the
core data structures utilized and the filtering algorithm.

3.1 NETS Query Encoding and Data Structures
 The NETS representation of query profiles is generated by
encoding a start and end symbol for each node in the tree as
presented in Definition 1. For each start-symbol in the NETS,
an additional attribute referred to as ‘relationship’ is encoded to
specify the relationship between a node and its parent node. For
example, if the relation is a parent-child ‘/’ then the attribute
shall be ‘=1’, specifying that two nodes must be one level apart.
If the relation is an ancestor-descendant ‘//’ then the attribute
shall be ‘≥1’, specifying that two nodes must be at least one
level apart. Wildcards ‘*’ are handled differently depending on
the occurrence of the ‘*’ in the query. If the wildcard operator
appears as a branch node in the twig (See Q1 in Figure 3), then
the ‘*’ is encoded as a regular node. Otherwise, if it is a non-
branch node (See Q2 in Figure 3), then the next non-wildcard
node is encoded in the NETS, and the occurrence of the
wildcard is reflected by the ‘relationship’ attribute. The
encoded NETS of a query twig is referred to as query sequence.
To support value-based predicates, the query sequence can be
augmented to include an additional attribute that specifies the
predicate value and operator {= , < , > , ≥ , ≤}.

Example 1: Consider the query twigs shown in Figure 3. Q1

contains a branch wildcard node, thus the * is encoded as a
regular node in the NETS(Q1). Q2 contains a non-branch
wildcard node, thus, the * is not encoded as part of NETS(Q2)
and the next non-wildcard node is associated with relation ‘=3.’

Sa

Q1: /a/*[b]//c/d

-

S*

=1

Sb

=1

Eb Sc

≥1

Sd Ed Ec Sa

Q2: /a[b//c]/*/*/d

-

Sb

=1

Sc Ec Eb Sd

≥1

a

*
b c

d

a

*b

*
d

c
E* Ea

=1

Ed Ea

=3

Figure 3: NETS Encoding of Query Twigs

 The filtering algorithm utilizes several structures for
subsequence matching, as illustrated by the example in Figure 4.
A runtime global stack is maintained by the filtering algorithm
where each entry in the stack is a tuple that contains a start-
symbol of the XML sequence and its preorder and level. The
tuples are pushed to the stack as start-symbols are generated. At
the start of the filtering algorithm, concurrent subsequence

searches are initiated over the query sequences. For non-
recursive XML documents, only one subsequence search is
needed for each query, however, for recursive XML, more than
one subsequence search over the same query sequence may be
initiated. Each subsequence search maintains queryPos and
queryStack. The queryPos is an integer that denotes the current
position in the query sequence. The queryStack is a stack where
each entry is an ordered pair. The first component in the stack is
the index of the matched XML start-symbol in the global stack.
The second component is the position of the matched start-
symbol in the query sequence. The ordered pairs are pushed and
popped to and from the queryStack as start and end symbols in
the XML sequence are matched to the query sequence. The
filtering algorithm also utilizes a dynamic hashtable, called
sequenceIndex, to facilitate concurrent processing of query twigs.
The sequenceIndex uses the start and end symbol assigned to
each XML tag as a key into the hashtable. For each key (start or
end symbol) it maintains a list of queries to be matched specified
by their queryIds, the query’s unique identification.

3.2 Filtering Algorithm
 At the start of filtering, the first node of each query sequence
is inserted into the sequenceIndex. The streaming XML
document is parsed by the SAX parser; the
ProcessStartSymbol(.) function is called when an open tag is
generated and the ProcessEndSymbol is called when an end tag
is generated. Note that the SAX methods have been slightly
altered to maintain level and preorder information for each
XML tag (see Algorithm 1).
Algorithm 1: XML SAX Parser – Filtering Algorithm
1 int level = -1
2 int preorder = -1
3 Stack globalStack;

/* at the start of each new document, initialize sequenceIndex and
queryPos */

4 procedure startDocument()
5 foreach query twig q do

 /* let nextSymbol denote the initial symbol in the sequence */
6 sequenceIndex[nextSymbol].insert (q’s queryId)
7 set queryPos to 0
8 end
 /* generate start-symbol, preorder and level of XML tag*/
9 procedure startElement (tag)
10 startSymbol = S + tag
11 level + = 1
12 preorder + = 1
13 globalStack.push(startSymbol, preorder, level)
14 ProcessStartSymbol (startSymbol, preorder, level)
15 end
 /* generate end-symbol, preorder and level of XML tag */
16 procedure endElement (tag)
17 endSymbol = E + tag
18 preorder = pop global stack to get preorder of node
19 ProcessEndSymbol (endSymbol, preorder, level)
20 level - = 1
21 end

 The ProcessStartSymbol(.) function is described by Algorithm
2a. This function receives a start-symbol and its preorder
number and level as input. The filtering algorithm probes the
sequenceIndex for a list of queries that match the startSymbol.
For each query in the currentList, the algorithm verifies that the
level-consistent property holds for the current query node (lines
4 – 5). The top entry of the queryStack is retrieved and the first
component, referred to as indexParAnc, is used to retrieve the
xmlParAncNode from the globalStack. The difference between
the current startSymbol’s level and the xmlParAncNode’s level
is calculated to determine whether the query’s relationship
attribute is satisfied. If the property is satisfied, then the

following steps are performed. First, the index of the matched
startSymbol (its index in the globalStack) and the queryPos are
inserted into the queryStack. Second, the queryPos is
incremented by one. Lastly, the next symbol in the query
sequence is added to the sequenceIndex.

Algorithm 2a: Filtering Algorithm - Start Symbol Handing
1 procedure ProcessStartSymbol(startSymbol, preorder, level)

/* probe sequenceIndex for matching queries */
2 currentList = sequenceIndex [startSymbol]
3 foreach q in currentList do

 /* Let ‘indexParAnc’ denote the first component of the top
 element in the queryStack’ */

4 xmlParAncNode = globalStack . get (indexParAnc)

 /* verify level-consistent property holds */

5 If xmlParAncNode.level–level satisfies query’s
relationship attribute then

/* let ‘nextSymbol’ denote the next symbol in query sequence */
6 sequenceIndex[nextSymbol] . insert (q’s queryId)
7

 /* let ‘index’ denote the index of the parameter startSymbol in the
globalStack */

8 push index & queryPos onto queryStack
9 queryPos + = 1 / * advance query sequence position */
10 endfor
11 end
Algorithm 2b: Filtering Algorithm – End Symbol Handling
1 procedure ProcessEndSymbol(endSymbol, preorder, level)

/* probe sequenceIndex for matching queries */
2 currentList = sequenceIndex [endSymbol]
3 foreach q in currentList do

/* Let ‘indexParAnc’ denote the first component of the top element of
the queryStack */

4 xmlParAncNode = globalStack . get(indexParAnc)

/* verify preorder match s */
5 if xmlParAncNode . preorder = preorder then

/* remove end and start symbol from sequenceIndex */
/* let ‘startSymbol’ denote the symbol obtained by replacing ‘E’
with ‘S’ in the parameter endSymbol */

6 sequenceIndex[endSymbol].remove(q’s queryId)
7 sequenceIndex[startSymbol].remove(q’s queryId)
8 queryStack.pop() /* pop the top element off the queryStack */
9 queryPos + = 1

/* let ‘nextSymbol’ denote the next symbol in query sequence*/

10 if nextSymbol is null then /* end of query sequence */
11 report query as a match
12 else
13 sequenceIndex[nextSymbol].insert(q’s queryId)
14 endfor
15

/* handle query backtracking */
16 currentList = sequenceIndex[startSymbol]
17 foreach q in currentList do

/* Let ‘indexParAnc’ denote the first component of the top element of
the queryStack */

18 xmlParAncNode = globalStack . get(indexParAnc)

19 if xmlParAncNode.preorder = preorder then
/* must backtrack query sequence position */

20 queryStack.pop() /*pop top element off the queryStack */
21 delete last inserted queryId in sequenceIndex
22 update queryPos
23 endfor
24 end

Sa
Sb
Sc

Sa
Sb

SequenceIndex Initial state

Q1 queryStack

Q2 queryStack

Sa
Sb
Sc

Sa

Sb

Sc

→

(b) ProcessStartSymbol(Sb, 1, 1)(a) ProcessStartSymbol(Sa, 0, 0) (c) ProcessStartSymbol(Sc, 2, 2)

Sa

Sb

Sa

Sb

(g) ProcessStartSymbol(Sg, 6, 2)

Q1

(d) ProcessEndSymbol(Ec, 2, 2)

Q2

Sa

Sb

(h) ProcessEndSymbol(Eg, 6, 2)

Q1

→

→

Q1
Q2

Q2

Q2

Q2

Q2

→

→

→

→

→

→

→

→

→

→

→

Sa

Sb

(i) ProcessEndSymbol(Eb, 4, 1)

Q1

Q2

→

→

Sa

Sb

(j) ProcessEndSymbol(Ea, 0, 0)

Q1

Q2

→

→

Q2

Sa

Sb

(e) ProcessEndSymbol(Eb, 1, 1)

Q2

Q1

→

→

Sg
Ea
Eb
Ec
Eg

Sc →

Sg
Ea
Eb
Ec
Eg

→

→

→

→

→

Sg
Ea
Eb
Ec
Eg

→

→

→

→

→

Sg

Ea

Eb

Ec

Eg

→

→

→

→

→

Sc →

Sg

Ea

Eb

Ec

Eg

→

→

→

→

→

Sc →

Sg

Ea

Eb

Ec

Eg

→

→

→

→

→

Sc →

Sg

Ea

Eb

Ec

Eg

→

→

→

→

→

Sc →

Sg

Ea

Eb

Ec

Eg

→

→

→

→

→

Sc →

Sg

Ea

Eb

Ec

Eg

→

→

→

→

→

Sc →

Sg

Ea

Eb

Ec

Eg

→

→

→

→

→

Sa
Sb

(f) ProcessStartSymbol(Sb, 4, 1)

Q1
Q2

Sc
Sg
Ea
Eb
Ec

Eg

End of NETS(Q2) is reached,
thus, Q2 is reported as a
match

Denotes deletion due to
backtacking

Denotes deletion due to
a match

End of Filtering Algoritm

0

queryPos

0

queryPos
 (0,0)

 (0,0)

1

1

 (0,0) , (1,1)

 (0,0) , (1,1)

2

2

 (0,0) , (1,1) , (2,2)

 (0,0) , (1,1) , (2,2)

3

3

 (0,0) , (1,1) , (2,2)

 (0,0) , (1,1) , (2,2)

4

4

 (0,0) , (1,1)

 (0,0) , (1,1)

1

5

 (0,0) , (1,1)

 (0,0) , (1,5)

2

6

 (0,0) , (1,1)

 (0,0) , (1,5) , (2,6)

2

7

(0,0) , (1,1)

(0,0) , (1,5) , (2,6)

2

8

(0,0) , (1,1)

(0,0) , (1,5)

1

9

(0,0)

(0,0)

0

Q1 , Q2

Global St

Q1 , Q2 Q1 , Q2

Q1 , Q2

Global St

(Sa,0,0)
Q1 , Q2

Q1 , Q2

Q1 , Q2 Q1 , Q2
Q1 , Q2
Q1 , Q2 Q1 , Q2

Q1 , Q2
Q1 , Q2

Q1 , Q2

Q1 , Q2
Q1 , Q2

Global St

(Sa,0,0)
(Sb,4,1)

Q1 , Q2
Q1 , Q2

Q1 , Q2
Q1 , Q2

Q1 , Q2
Q1 , Q2

Q1 , Q2

Q1 , Q2
Q1 , Q2

Global St

(Sa,0,0)
(Sb,1,1)

Global St

(Sa,0,0)
(Sb,1,1)
(Sc,2,2)

Global St

(Sa,0,0)
(Sb,1,1)

Global St

(Sa,0,0)
(Sb,4,1)
(Sg,6,2)

Global St

(Sa,0,0)
(Sb,4,1)
(Sg,6,2)

Global St

(Sa,0,0)
(Sb,4,1)

Global St

(Sa,0,0)

Global St

(Sa,0,0)
(Sb,1,1)
(Sc,2,2)

→

→

→

→

→

→

→

→

0

1

0

1

2

0

1

2

0

1

0

0

1

2

0

1

2

0

1

0

1
0

→

→

→

→

→

→

→

→

Q1 queryStack

Q2 queryStack

queryPos

queryPos

Q1 queryStack

Q2 queryStack

queryPos

queryPos

Q1 queryStack

Q2 queryStack

queryPos

queryPos

Q1 queryStack

Q2 queryStack

queryPos

queryPos

Q1 queryStack

Q2 queryStack

queryPos

queryPos

Q1 queryStack

Q2 queryStack

queryPos

queryPos

Q1 queryStack

Q2 queryStack

queryPos

queryPos

Q1 queryStack

Q2 queryStack

queryPos

queryPos

Q1 queryStack

Q2 queryStack

queryPos

queryPos

Q1 queryStack

Q2 queryStack

queryPos

queryPos

1

2 2 2

2

1

22

0

1

2

Figure 4: Filtering Algorithm Example

 The ProcessEndSymbol(.) function is described by Algorithm
2b. For each query in the currentList, the filtering algorithm
first verifies that the current endSymbol’s preorder number
equals that of the xmlParAncNode. If there is a match, then the
queryId is deleted from the start-symbol’s and end-symbol’s
lists in the sequenceIndex. If the end of the query sequence is
reached, then the query is reported as a match. Otherwise, the
next symbol is added to the sequenceIndex. At times,
backtracking to a previous query sequence position is required
due to a false match (lines 16-23). The sequenceIndex is
probed for the start-symbol and a list of queryIds is retrieved.
For each query in currentList, the top entry of the queryStack is
retrieved and the first component, referred to as indexParAnc,
is used to retrieve the xmlParAncNode from the globalStack.
The xmlParAncNode’s preorder is compared to the current
endSymbol’s preorder. If there is a preorder match, then
backtracked is performed by the following steps. First, the top
entry is popped off the queryStack. Second, the last inserted
queryId is deleted from the sequenceIndex, and lastly the
queryPos is updated to indicate the new position in the query
sequence.
 Below, we illustrate the execution of our filtering algorithm
with the XML tree T and twig patterns Q1 and Q2 shown in
Figure 1.
Example 2: In Figure 4(a), the ProcessStartSymbol(.) is
invoked for ‘Sa’ and the sequenceIndex contains Q1 and Q2 for
key ‘Sa’. The ‘level-consistent’ property is automatically
satisfied since the queryPos points to the first symbol in the
query sequence. Thus, the subsequence search for both Q1 and
Q2 is advanced. First, the next symbol in the query sequence
(‘Sb’ for both Q1 and Q2) is retrieved and the queryIds are
inserted into the sequenceIndex for that key. Second, the index
of the startSymbol in the global stack (the index is ‘0’) and the
queryPos (the queryPos is ‘0’) are inserted into the queryStack,
thus the tuple (0,0) is pushed to the Q1 and Q2 queryStack.
Lastly, the queryPos of Q1 and Q2 is incremented by 1. The
algorithm proceeds to process XML nodes (Sb,1,1) and (Sc,2,2)
in Figures 4(b) and 4(c).

 In Figure 4(d), the ProcessEndSymbol(.) is invoked for ‘Ec,’

and the sequenceIndex contains Q1 and Q2 for key ‘Ec’. The top
ordered pair in the Q1 and Q2 queryStack is (2,2). The first
component of the pair is used to retrieve the xmlParAncNode in
the global stack, thus, (Sc, 2,2) is retrieved. The preorder of the
current endSymbol and xmlParAncNode match, thus, the
search for both Q1 and Q2 is advanced. The queryIds, Q1 and
Q2, are deleted from the list of ‘Sc’ and ‘Ec’ in the
sequenceIndex. The next symbol in the sequence of Q1 and Q2

is ‘Sg’ and ‘Eb’, respectively. The queryIds are inserted into
the sequenceIndex for their corresponding keys. For both Q1

and Q2, the top entry is popped off the queryStack and the
queryPos is incremented by 1.
 In Figure 4(e), the ProcessEndSymbol(.) is invoked with end-
label ‘Eb’. Q2 is retrieved and the preorder check is verified,
thus Q2’s search is advanced. First, the top element is popped
off Q2’s queryStack. Second, Q2’s queryPos is incremented by
1. Lastly, Q2 is deleted from the sequenceIndex list for keys
‘Sc’ and ‘Ec’. Note that backtracking of Q1 occurs as well.
After processing Q2, the sequenceIndex is probed for the
corresponding start-symbol ‘Sb’, and Q1 is retrieved. The
preorder check returns a match, thus, indicating that Q1 should
be backtracked. Thus, the Q1 queryStack is popped, queryId Q1

is deleted from the sequenceIndex list for key ‘Sg,’ and the
Q1’s queryPos is backtracked to 1. In Figure 4 (f – i) the
algorithm proceeds as described by Algorithm 2. In Figure 4(j),
the last query sequence symbol of Q2 is matched and thus Q2 is
reported as a match. Q1, however, is not reported as match
because the end of the query sequence is not reached. Please
note (Sd,3,2), (Ed,3,2), (Sk,7,2) and (Ek,7,2) are not shown in the
Figure 4 since the state of the structures does not change.

 Example 2 shows the execution of the basic filtering
algorithm for non-recursive XML document. If recursion occurs
in the XML documents, multiple subsequence ‘searches’ may
be initiated over each query sequence. The data structures and
the algorithm steps were slightly modified in the final
implementation of the algorithm to process multiple searches

for each query sequence. For each query search initiated, a
queryStack and queryPos is maintained as before. The entries
inserted into the sequenceIndex are extended to include the
search ID, thus, for each key the sequenceIndex will contain a
list of ordered pairs that contains the queryId and searchId. The
ProcessStartSymbol(.) was slightly modified to initiate a new
search when a recursive start-symbol is encountered. The
filtering algorithm will first verify that the level-consistent
property holds. If the level-consistent property is satisfied, then
a new search is initiated and its corresponding queryStack and
queryPos are updated to denote the current position of the
search in the query sequence. The other operations of the
filtering algorithm are maintained with the exception that
multiple searches must be initiated as recursive elements are
encountered.

4. EXPERIMENTAL RESULTS
 In our experiments, we compared the performance of our
system to that of YFilter[5] and FiST[7]. We utilized the
YFilter Java implementation provided by the authors. We
implemented FiST and NETS in Java as well. All experiments
were performed on a Quad Core 2.66GHz processor with 8GB
of memory running Linux Red Hat. We used the synthetic
Sigmod [6] dataset for our experiments. We also generated twig
patterns using the XPath generator available in the YFilter
package. The element names were chosen from uniform
distribution and the max depth of a twig pattern was fixed at 7.
The number of branches in the twig patterns was fixed to 3,
and the probability of ‘*’ and ‘//’ was fixed to 50 percent.

0

20

40

60

80

100

120

140

160

25K 50K 75K 100K 125K 150K 175K 200K
Number of Queries

(a)

w
a

ll
 c

lo
c

k
 t

im
e
 (

s
e
c

)

Yfilter [50KB] NETS[50KB] FiST[50KB]

0

20

40

60

80

100

120

140

160

10KB 20KB 30KB 40KB 50KB
Size of XML Document (KB)

(b)

w
a
ll

 c
lo

c
k
 t

im
e
 (

s
e
c
)

Yfilter [200K] NETS[200K] FiST[200K]

 Figure 5 compares the performance of our filtering system
with that of YFilter and FiST. In Figure 5(a), the document size
was fixed to 50KB and the numbers of twig queries were
varied from 25,000 to 200,000 in steps of 25K. For 25K
queries, all three methods perform comparably well, however,
as the number of twig patterns were increased, the filtering
time for FiST and YFilter increase dramatically. In Figure 5(b),
the number of queries was fixed to 200,000 and the document
size was varied from 10KB to 50KB. For 10KB case, all three
methods yielded comparable results. The performance
improvement of NETS was noticed as the document size was
increased to 50KB.

 The performance improvement achieved by the NETS
approach is due to two reasons. First, our filtering approach
employs holistic filtering of the query sequences, thus a match
or a dismissal of a particular query twig can be made earlier in
the filtering process. Second, our filtering approach filters false
matches on-the-fly, thus avoiding an expensive post-processing
phase. We conclude that our approach provides an efficient
filtering algorithm that is scalable in terms of the number of
user profiles and the size of the XML document.

5. CONCLUSION
 We presented an XML-based filtering system that uses a new
sequence encoding (NETS) for both the streaming documents
and query profiles. Using NETS we provided a necessary and
sufficient condition for a query profile to have a match in a
given document. An important property of our system is that
false positives and false dismissals are eliminated on-the-fly
with a single scan of the streaming document. Experimental
evaluation showed that NETS filtering provided performance
improvements in comparison to state-of-the-art filtering
systems. We plan to explore NETS encoding for the full-
fledged case that reports the positions of all query matches in a
streaming XML document. Moreover, we will explore the
benefits of this encoding for traditional structural XML query
processing.

6. ACKNOWLEDGMENTS
This research was partially supported by NSF grant 0705916

7. REFERENCES
[1] Altinel, M., and Franklin M., Efficient Filtering of XML Documents

for Selective Dissemination of Information. In VLDB Journal,
pages 53-64, September 2000.

[2] Antonellis, P., and Makris, C., XFIS: An XML Filtering System
based on String Representation and Matching. International
Journal on Web Engineering and Technology (IJWET). v.4, n.1,
pages 70–94, 2008.

[3] Berglund, A., Boag, D., Chamberlin, M., Fernandez, M., Kay, M.,
Robie, J., Dimeon, J., XML Path Language (XPath) 2.0. In W3C
Proposed Recommendation, http://www.w3.org/TR/xpath20,
2006.

[4] Diao, Y., Rizvi, S. and Franklin, M.J., Towards an Internet-Scale
XML Dissemination Service. In Proc. Of VLDB, 2004.

[5] Diao, Y., Altinel, M., Franklin, M.J., Zhang, H., and Fischer, P.
Path Sharing and Predicate Evaluation for High-Performance XML
Filtering. ACM Trans. Database Syst., v.28, n.4, pages 467–516,
2003.

[6] Kwon, J., Rao, P., Moon, B., Lee, S. Value-based Predicate
Filteirng of XML Documents. Data and Knowledge Engineering,
v.67, n.1, pages 51-73, 2008.

[7] Kwon, J., Rao, P., Moon, B., and Lee, S. FiST: Scalable XML
Document Filtering by Sequencing Twig Patterns. In VLDB ’05:
Proceedings of the 31st international conference on Very large
data bases, pages 217–228. VLDB Endowment, 2005.

[8] Rao, P., Moon, B., Sequencing XML Data and Query Twigs for
Fast Pattern Matching, ACM Transactions on Database Systems
(TODS), v.31 n.1, pages 299-345, 2006.

[9] University of Washington XML Repository, 2002,
http://www.cs.washington.edu/research/xmldatasets/

[10] Wang, H., and Meng, X., On the Sequencing of Tree Structures for
XML Indexing. In Proceedings of ICDE, 2005.

[11] Wang, H., Park, S., Fan, W., And Yu, P., ViST: A dynamic index
method for querying xml data by tree structures, In Proceedings of
the SIGMOD Conference, pages 110–121, 2003.

Figure 5: Filtering Time Experimental Results

	1. INTRODUCTION
	2. NODE ENCODED TREE SEQUENCE
	3. FILTERING SYSTEM
	3.1 NETS Query Encoding and Data Structures
	3.2 Filtering Algorithm

	4. EXPERIMENTAL RESULTS
	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES

