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ABSTRACT
The  ubiquitous  adoption  of  XML  as  the  standard  of  data 
exchange over the web has led to increased interest in building 
efficient  and  scalable  XML  publish-subscribe  (pub-sub) 
systems. The central function of an XML-based pub-sub system 
is to perform XML filtering efficiently, i.e. identify those XPath 
expressions that have a match in a streaming XML document. 
In  this  paper,  we  propose  a  new  sequence-based  approach, 
which  transforms  both  XML  documents  and  XPath  twig 
expressions  into  Node  Encoded  Tree  Sequences  (NETS).  In 
terms of this  encoding,  we provide a necessary and sufficient 
condition  for an XPath  twig to represent  a  match  in  a given 
XML document. The proposed filtering procedure is based on a 
new subsequence matching algorithm devised for NETS, which 
identifies the set of matched queries free of false positives with 
a  single scan of the  XML document.  Extensive  experimental 
results show that the NETS method outperforms previous XML 
filtering approaches. 

1. INTRODUCTION 
   With the increased adoption of XML as the de facto standard 
for  publishing  and  exchanging  of  information  over  the  web, 
XML-based pub-sub systems have emerged. In a typical XML-
based  pub-sub  system,  users  (subscribers)  express  their 
interests (profiles) using XML query languages (such as XPath 
[3]),  while  publishers  distribute  their  messages  encoded  as 
XML documents.  Each published  message is matched against 
user queries  so  that  messages are only delivered to interested 
users.  Several  approaches  have  been  proposed  to  solve  the 
XML filtering problem; the main two categories are (i)  FSM-
based and (ii) Sequence-based approaches.
  Several  Finite  State  Automata  approaches  have  been 
proposed.  An early work,  XFilter  [1],  considered  simple  path 
profiles and proposed building an FSM for each distinct profile. 
The FSM states are then traversed,  while XML tag events are 
generated by the parsing of the streaming document. YFilter [4]
[5] was  a successor  of XFilter  and proposed building a NFA 
representation  that  combines  all  user  profiles  into  a  single 
machine.  This  approach yields  better  results  since it  exploits 
the  commonality  among  path  expressions.  In  order  to 
implement  twig  filtering,  FSM-based  approaches  typically 
break twig queries into their simple linear paths. This approach 
however,  requires an expensive  post-processing phase  to join 
the results. 
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     In the sequence-based approaches [2][7], the XML document 
and profile twigs are transformed into sequences. FiST [7] was 
the  first  to  propose  a  sequence-based  XML filtering  system 
using Prufer  sequence encoding.  This  approach was shown to 
be more efficient than automata-based approaches since whole 
twig profiles are processed at once. Nevertheless, subsequence 
matching could create false positives and thus a post-processing 
phase is required to filter them. XFIS [2] is another Prufer-like 
sequence  encoding  of  XML  documents  and  profile  twigs, 
however it does not account for tag recursion in the XML data. 
     In this paper, we propose a new sequence-based approach to 
solve the XML filtering problem. The key contributions of this 
paper can be summarized as follows:
 We  present  a  new,  simple  and  effective  sequence 

representation for XML documents and query twig patterns, 
called NETS (Node Encoded Tree Sequence). 

 Using NETS, we present a necessary and sufficient condition 
for a twig profile to match a given XML document tree.  

 We  present  a  filtering  system  for  ordered  twig  pattern 
matching that  employs concurrent  subsequence matching of 
query profiles. Our filtering approach is unique since it does 
not  require  a  post-refinement  phase.  The  approach 
guarantees  that  returned  matches are  free of false  positives 
(and  false  negatives)  with  a  single scan  of  the  XML 
document. 

 Experimental  results  show  that  the  proposed  approach 
outperforms  previous  XML  filtering  approaches. 
Performance  improvements  are  achieved  through  holistic 
processing of twig patterns and on-the-fly detection of false 
matches.   

   We proceed with the description of the  NETS encoding in 
Section 2. In Section 3 we provide the details  of our filtering 
system.  Section  4  presents  experimental  results  while 
conclusions appear in Section 5. 

2. NODE ENCODED TREE SEQUENCE 
     An XML document is modeled as a rooted ordered labeled 
tree where each node corresponds to an element tag, attribute, 
or value,  and edges represent  structural  relationships  between 
nodes. Several sequence representations for labeled trees have 
been proposed and utilized for XML filtering or query matching 
[8][10][11].  We  present  a  simple  yet  efficient  sequence 
representation  for  XML  trees  called  Node  Encoded  Tree 
Sequence (NETS). 
     For each node in a given tree, the NETS of the tree contains 
two symbols referred to as ‘start-symbol’ and ‘end-symbol.’ For 
example,  given a tree  T with a node labeled x,  the  NETS(T) 
will contain the start-symbol ‘Sx’ and end-symbol ‘Ex’ for node 
labeled x. The Node Encoded Tree Sequence of T, NETS(T), is 
defined  recursively as follows.  An example  of a XML tree  T 
and its corresponding NETS is shown in Figure 1(a). 



Definition 1 (Node Encoded Tree Sequence):
1. If  tree  T  consists  of a  single  node  labeled  by r,  then  the 

NETS(T) is Sr Er.
2. Let  r  be  the  root  of tree  T  and  assume  r  has  m children 

labeled from left-to-right as r1, r2 ,…, rm. Let sequences S1, S2,
…, Sm be the NETS of the subtrees whose roots are r1, r2, …, 
rm, respectively. Then the NETS(T) is Sr S1 S2  …  Sm Er.
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Figure 1: NETS Representation of XML Tree and Query Twigs

   An XPath query expression can also be modeled as a labeled 
tree (referred to as a query twig) where each node represents an 
element  or  value,  and  edges  denote  parent-child  (‘/’)  or 
ancestor-descendant  (‘//’)  relationships  (see  Figure  1(b)(c)). 
The  NETS  of  a  query  twig  is  generated  in  accordance  to 
Definition 1. Note, when generating NETS of a twig query no 
distinction  is  made  between  parent-child  and  ancestor-
descendant  edges  in  the  tree.  In  Section  3.1,  we  associate 
additional attributes to the NETS sequence nodes to encode ‘/’, 
‘//’, and ‘*’.
   We note that NETS is essentially equivalent to SAX tokens, 
thus it  has several  properties.  For a given label,  x, the NETS 
must  have  an  equal  number  of  start-symbols  (Sx)  and  end-
symbols (Ex). For every two nodes in the tree with labels x and 
y,  the  corresponding  segments  Sx….Ex  and  Sy…Ey in  the 
sequence  are  either  disjoint  or  nested.  The  start  and  end 
symbols of the same node are called corresponding symbols. If 
a  node  is  labeled  by  x,  the  preorder  of  the  corresponding 
symbols  Sx  and  Ex  are  defined  as 
preorder(Sx)=preorder(Ex)=preorder(x).  Hence,  any two  start 
and  end  symbols  in  the  NETS are  said  to  be  corresponding 
symbols if they have the same preorder number.  
   The  objective  of  the  filtering  algorithm  is  to  determine 
whether a given query twig has a ‘match’ in a XML tree. For a 
query  to  be  a  match,  the  query  twig  must  be  a  subgraph 
(Definition 2) of the XML tree and satisfy the ‘level-consistent’ 
property (Definition 3), which we formally define as follows:  
Definition 2 (Subgraph): Let T=(V,E) be a labeled tree, where 
V is the set of all nodes in T and E is the set of all edges in T. 
For every node n in V, let label(n) denote the label of n and let 
preorder(n) denote the number associated with the node based 
on the tree  preorder  traversal.  A labeled  tree  Q=(V’,E’)  is  a 
subgraph of T if the following two conditions hold:  (1) There is 
a one-to-one mapping f()  from V’ into V such that  for every 
node n in V’ label(n)=label(f(n)),  and for every edge (n1,n2) in 
E’ there  is  a path  from f(n1)  to f(n2)  in  T. (2)  For every two 
nodes  n1 and  n2 in  Q,  if  preorder(n1)  <  preorder(n2)  then 
preorder(f(n1))  <  preorder(f(n2)).  While  (1)  guarantees  that 
ancestor-descendent  relationships  in  Q  are  'found'  in  T,  (2) 
guarantees that the relative order of nodes in Q corresponds to 
the one in T.
Definition  3 (Level-Consistent):  Let  Q  be  a  query  and 
subgraph of an XML tree T, and let level(m) denote the level of 
a  node  m  in  T.  A  query  Q  satisfies  the  ‘level-consistent’  
property iff the following condition holds: For every edge (n1,n2) 

NEST(Q1):

NEST(T): Sa Sb Sc Ec Sd Ed Eb Sb Sd Ed Sg Eg Sk Ek Eb Ea
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Figure 2: Q1 is a False Match and Q2 is a Match

in Q, if the edge is of type ‘//’, then level(f(n1))–level(f(n2)) ≥ 1. 
Otherwise, if (n1,n2) is of type ‘/’, then level(f(n1)) – level(f(n2)) 
= 1,  where  n1 and  n2 denote  nodes in  Q and  f is  one-to-one 
mapping as described in Definition 2. Note, the root is assigned 
a level of zero, the root’s children are assigned a level of one, 
e.t. 
   The  filtering  algorithm  involves  subsequence  matching 
between  the  NETS  sequences  of  the  twig  profile  and  the 
document,  to  determine  if  there  is  a  match.  The  following 
theorem states  the  relation between the query twig and XML 
tree and their sequence representation.
Theorem 1: Given two rooted labeled trees T and Q, if Q has a 
match in T then the NETS(Q) is a subsequence of  NETS(T). 
Proof:  Since  Q  has  a  match  in  T,  Q  is  a  subgraph  and 
consequently there is a one-to-one mapping f from the nodes in 
V’ into the nodes of V such that the label(n) = label(f(n)) for 
every node n in V’ and satisfies other properties of Definition 2. 
Thus,  each  start-symbol  and  end-symbol  in  NETS(Q)  must 
appear  in  NETS(T),  but  we  need  to prove that  occurrence of 
these symbols appear in the same order in both NETS(Q) and 
NETS(T). Two cases are considered for every two nodes n1 and 
n2 in Q, whose corresponding start and end symbols are (Sx,Ex) 
and (Sy,Ey), respectively. 
Case 1: There is a path from n1 to n2 in Q. 
Thus,  the segment Sx…Ex in NETS(Q) must  contain the segment 
Sy…Ey  such  that  the  order  of  the  symbols  in  NETS(Q)  is 
Sx..Sy..Ey..Ex. Since f(n1) and f(n2) have the same symbols as that of 
n1 and n2 and there is a path from f(n1) and f(n2) in T, then the order 
of the start and end labels of f(n1) and f(n2) in NETS(T) is also Sx…
Sy…Ey..Ex.
Case 2: No path exists between n1 and n2. 
Since there is no path between nodes n1 and n2,  then the segment 
Sx…Ex and Sy…Ey in NETS(Q) must be disjoint. Thus, the order of 
the symbols in NETS(Q) is either Sx…Ex…Sy…Ey or  Sy…Sy…
Sx…Ex depending on the preorder number of nodes n1 and n2. Since 
Q  is  a  subgraph  of  T,  the  preorder(n1)  <  preorder(n2)  iff 
preorder(f(n))  <  preorder(f(n2)),  consequently,  the  symbols  in 
NETS(T) must appear in the same order.         

   Given  trees  Q  and  T,  if  we  enumerate  all  possible 
subsequences  of NETS(T)  that  match NETS(Q),  then we  are 
guaranteed  to  report  all  matches  with  no  false  dismissals. 
However,  we note that  the result  may contain false  positives. 
Consider the XML tree T and query twigs Q1 and Q2 shown in 
Figure  1.  Figure  2  shows  the  NETS  of  T,  Q1 and  Q2.  The 
NETS(Q1)  and  NETS(Q2)  are  both  subsequences  of  the 
NETS(T). However, we note that Q1 is a false match because it 
is  not a subgraph of tree T.  As we proceed,  we shall  prove a 
necessary and  sufficient condition for a query to have a match 
in a given XML document. 
Definition  4 (Tree Subsequence):  Let T be a NETS labeled 
tree. A subsequence S of NETS(T) is called a tree subsequence 
if the following two conditions hold:



1. If Sx(Ex) is in S, then the corresponding symbol Ex(Sx) is 
also in S, i.e. if Sx(Ex) is in S then the Ex(Sx) with the same 
preorder number is also in S. 

2. S = Sr … Er, where Sr and Er are corresponding symbols. 

   Reconsider the XML tree and query twigs shown in Figure 1. 
The XML tree nodes are numbered with a preorder traversal of 
the tree so that each node has a unique number (See Figure 2). 
When  NETS(Q1)  is  matched  with  NETS(T),  we  note  the 
matched subsequence is not a tree subsequence and hence Q1 is 
not reported as a match. The matched subsequence for Q2 is a 
tree subsequence and hence Q2 is reported as a match.
Definition  5 (Level  of Start  and End Symbols):  Given two 
rooted labeled trees Q and T, let T be a tree and x be a node in 
T. The Level(Sx) = Level(Ex) = Level(x), where Sx and Ex are 
the corresponding start and end labels of x.
Theorem 2: Given two rooted labeled trees Q and T, Q has a 
match in T iff there is a tree subsequence S of NETS(T) such 
that:
1. S = NETS(Q)

2. For every edge (n1,n2) in Q the following property holds:
If  (n1,n2) is of type   ‘/’,  then the level(Sy) - level(Sx) = 1,    
If (n1,n2) is of type ‘//’, then the level(Sy) - level(Sx) ≥ 1,  where n1 

and  n2 are  labeled  tree  nodes  in  Q  and  Sx  and  Sy  are  the 
corresponding start symbols in S. 

Proof:   Necessary Condition -  Assume  that  query  Q  has  a 
match  in  XML document  T.  By Theorem  1,  NETS(Q)  is  a 
subsequence of NETS(T). Let S be a subsequence of NETS(T) 
that  corresponds  to  NETS(Q).  Since  there  is  a  one-to-one 
mapping f from the nodes of Q into the nodes of T that satisfies 
the  properties  stated  in  the  definition  of  subgraph,  then  S 
satisfies the properties of tree subsequence. Also, since query Q 
has a match in T, then Q satisfies the level-consistent property. 
It  is  easy to  show  that  the  second  condition  of  Theorem  2 
follows from the level-consistent property. 
Sufficient Condition - Let Q be a query such that there is a tree 
subsequence S of NETS(T) that satisfies the two conditions of 
Theorem 2. To prove that Q has a match in T, we first  prove 
that Q is a subgraph of T, i.e. we define a 1-1 mapping f from 
the  nodes  of  Q  into  the  nodes  of  T,  which  satisfies  the 
properties stated in the subgraph definition. Let n be a node of 
Q with label x. The mapping f(n) is defined as follows: 
Since S=NETS(Q), the start and end symbols of node n must appear 
in S. As we progress, we will show that these two symbols in S are 
the start and symbols of the same node in T (i.e. they are not symbols 
of different nodes in T).  This node of T will be denoted as f(n).  Two 
cases need to be considered: 
Case 1: There is only node of Q with label x. 
Thus, tree subsequence S contains only one Sx and one Ex and 
they must be the start and end symbols of the same node in T, 
because they have the same preorder number. 
Case 2: There is more than one node in Q with label x. Without 
loss of generality, we assume that there are only two nodes (n 
and m) of Q with label x and preorder(n) < preorder(m). Thus, 
the  symbols  of  n  and  m  in  NETS(Q)  must  appear  in  the 
following order: 

Sx … Ex … Sx … Ex

n n m m

Sx … Ex … Sx … Ex

n m m n

or

Since S=NETS(Q), these symbols also appear in S. Since S is a 
tree subsequence, then there are only two Sx and two Ex in S 
and  they  must  appear  in  the  same  order  as  above.  These 
symbols correspond to the two nodes in T denoted by Tm and Tn. 

We will prove by contradiction that the Sx and Ex of node n in 
Q correspond to either the Sx and Ex of Tm  or the Sx and Ex of 
Tn. Suppose that Sx and Ex of n corresponds to the Sx of Tn and 
Ex of Tm, respectively as shown below:

Sx … Ex … Sx … Ex

Tn Tm Tm Tn

Sx … Ex … Sx … Ex

Tn Tm Tn Tm

or

The first  case can be excluded because the sequence is not a 
valid NETS, since the Ex proceeds its corresponding Sx in the 
NETS.  The  second  case  can  also  be  excluded  because  the 
property of NETS requires that the segment Sx….Ex and Sx…
Ex of nodes Tm and Tn must either be disjoint or nested. In this 
case,  the  two  segments  overlap  and  thus  it’s  not  a  possible 
NETS. Thus, Sx and Ex of n in Q correspond to the Sx and Ex 
of the same node f(n) in T. It is easy to verify that f(n) satisfies 
the two properties stated in the subgraph definition. Thus, Q is 
a  subgraph  of T.  The second condition of Theorem 2 can be 
used to verify that Q satisfies the level consistency property; as 
a result, Q is a match of T.    

3. FILTERING SYSTEM
   In this section, we first describe how to encode wildcards, ‘/’ 
and ‘//’  for the query twig NETS. We proceed to describe the 
core data structures utilized and the filtering algorithm. 

3.1 NETS Query Encoding and Data Structures
   The NETS representation of query profiles  is  generated by 
encoding a start  and end symbol for each node in the  tree  as 
presented in Definition 1. For each start-symbol in the NETS, 
an additional attribute referred to as ‘relationship’ is encoded to 
specify the relationship between a node and its parent node. For 
example,  if the relation is a parent-child ‘/’  then the attribute 
shall be ‘=1’, specifying that two nodes must be one level apart. 
If the relation is an ancestor-descendant  ‘//’  then the attribute 
shall  be  ‘≥1’,  specifying that  two nodes must  be at  least  one 
level apart. Wildcards ‘*’ are handled differently depending on 
the occurrence of the ‘*’ in the query.  If the wildcard operator 
appears as a branch node in the twig (See Q1 in Figure 3), then 
the ‘*’ is encoded as a regular node. Otherwise, if it is a non-
branch node (See Q2 in Figure 3),  then the next non-wildcard 
node  is  encoded  in  the  NETS,  and  the  occurrence  of  the 
wildcard  is  reflected  by  the  ‘relationship’  attribute.  The 
encoded NETS of a query twig is referred to as query sequence. 
To support value-based predicates,  the query sequence can be 
augmented to include an additional attribute  that  specifies the 
predicate value and operator {= , < , > , ≥ , ≤}. 

Example  1:  Consider  the query twigs shown in Figure  3.  Q1 

contains  a  branch wildcard  node,  thus  the  * is  encoded as  a 
regular  node  in  the  NETS(Q1).  Q2 contains  a  non-branch 
wildcard node, thus, the * is not encoded as part of NETS(Q2) 
and the next non-wildcard node is associated with relation ‘=3.’ 
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Figure 3: NETS Encoding of Query Twigs 

  The  filtering  algorithm  utilizes  several  structures  for 
subsequence matching, as illustrated by the example in Figure 4. 
A runtime global stack is maintained by the filtering algorithm 
where  each entry in  the  stack is  a  tuple  that  contains  a  start-
symbol  of the  XML sequence and  its  preorder  and  level.  The 
tuples are pushed to the stack as start-symbols are generated. At 
the  start  of  the  filtering  algorithm,  concurrent  subsequence 



searches  are  initiated  over  the  query  sequences.  For  non-
recursive  XML  documents,  only  one  subsequence  search  is 
needed for each query, however, for recursive XML, more than 
one subsequence search over the  same query sequence may be 
initiated.  Each  subsequence  search  maintains  queryPos and 
queryStack. The  queryPos is an integer that denotes the current 
position in the query sequence. The queryStack is a stack where 
each entry is an ordered pair. The first component in the stack is 
the index of the matched XML start-symbol in the global stack. 
The  second  component  is  the  position  of  the  matched  start-
symbol in the query sequence. The ordered pairs are pushed and 
popped to and from the queryStack as start  and end symbols in 
the  XML sequence  are  matched  to  the  query  sequence.  The 
filtering  algorithm  also  utilizes  a  dynamic  hashtable,  called 
sequenceIndex, to facilitate concurrent processing of query twigs. 
The  sequenceIndex  uses  the  start  and  end  symbol  assigned  to 
each XML tag as a key into the hashtable. For each key (start or 
end symbol) it maintains a list of queries to be matched specified 
by their queryIds, the query’s unique identification. 

3.2 Filtering Algorithm
   At the start of filtering, the first node of each query sequence 
is  inserted  into  the  sequenceIndex.  The  streaming  XML 
document  is  parsed  by  the  SAX  parser;  the 
ProcessStartSymbol(.) function is  called  when  an  open tag is 
generated and the ProcessEndSymbol is called when an end tag 
is  generated.  Note  that  the  SAX methods  have  been  slightly 
altered  to  maintain  level  and  preorder  information  for  each 
XML tag (see Algorithm 1).
Algorithm 1: XML SAX Parser – Filtering Algorithm 
1 int level = -1
2 int preorder = -1
3 Stack globalStack;

/* at the start of each new document, initialize sequenceIndex and  
queryPos */

4 procedure startDocument() 
5 foreach  query twig q do 

      /* let nextSymbol denote the initial symbol in the sequence */
6 sequenceIndex[nextSymbol].insert (q’s queryId)
7 set queryPos to 0
8 end
      /* generate start-symbol, preorder and level of XML tag*/
9    procedure startElement (tag) 
10 startSymbol = S + tag  
11 level + = 1
12 preorder  + = 1
13 globalStack.push(startSymbol, preorder, level) 
14 ProcessStartSymbol (startSymbol, preorder, level)
15 end
      /* generate end-symbol, preorder and level of XML tag */
16 procedure endElement (tag)  
17 endSymbol = E + tag 
18 preorder = pop global stack to get preorder of node 
19 ProcessEndSymbol (endSymbol, preorder, level)
20 level - = 1
21 end
 

  The ProcessStartSymbol(.) function is described by Algorithm 
2a.  This  function  receives  a  start-symbol  and  its  preorder 
number and level  as input.  The filtering algorithm probes the 
sequenceIndex for a list of queries that match the startSymbol. 
For each query in the currentList, the algorithm verifies that the 
level-consistent property holds for the current query node (lines 
4 – 5). The top entry of the queryStack is retrieved and the first 
component, referred to as  indexParAnc, is used to retrieve the 
xmlParAncNode from the globalStack.  The difference between 
the current startSymbol’s level and the xmlParAncNode’s level 
is  calculated  to  determine  whether  the  query’s  relationship 
attribute  is  satisfied.  If  the  property  is  satisfied,  then  the 

following steps are performed. First,  the index of the matched 
startSymbol (its index in the globalStack) and the queryPos are 
inserted  into  the  queryStack.  Second,  the  queryPos  is 
incremented  by  one.  Lastly,  the  next  symbol  in  the  query 
sequence is added to the sequenceIndex.

Algorithm 2a: Filtering Algorithm   - Start Symbol Handing
1 procedure ProcessStartSymbol( startSymbol, preorder, level )

/* probe sequenceIndex for matching queries */ 
2 currentList = sequenceIndex [ startSymbol ]
3 foreach  q in currentList   do

   
   /* Let ‘indexParAnc’ denote the first component of the top
  element in the queryStack’ */

4 xmlParAncNode = globalStack . get ( indexParAnc ) 
  
  /* verify level-consistent property holds */

5 If    xmlParAncNode.level–level satisfies query’s
relationship attribute  then  

/* let ‘nextSymbol’ denote the next symbol in query sequence */
6  sequenceIndex[ nextSymbol ] . insert (q’s queryId)
7  

 /* let ‘index’ denote the index of the parameter startSymbol in the  
globalStack */

8         push  index & queryPos onto queryStack
9         queryPos + = 1 / * advance query sequence position */ 
10 endfor
11 end 
Algorithm 2b: Filtering Algorithm – End Symbol Handling
1 procedure ProcessEndSymbol( endSymbol, preorder, level)

/* probe sequenceIndex for matching queries */
2 currentList = sequenceIndex [ endSymbol ]
3 foreach  q in currentList   do

/* Let ‘indexParAnc’ denote the first component of the top element of  
the queryStack */ 

4 xmlParAncNode  =   globalStack . get(indexParAnc)

/* verify preorder match s */
5 if   xmlParAncNode . preorder = preorder then

/* remove end and start symbol from sequenceIndex */
/* let ‘startSymbol’ denote the symbol obtained by replacing ‘E’ 
with ‘S’ in the parameter endSymbol  */

6 sequenceIndex[endSymbol].remove(q’s queryId)
7 sequenceIndex[startSymbol].remove(q’s queryId) 
8 queryStack.pop()     /* pop the top element off the queryStack */
9 queryPos + = 1 

/* let ‘nextSymbol’ denote the next symbol in query sequence*/

10 if  nextSymbol is null  then  /* end of query sequence */
11 report query as a match
12 else 
13 sequenceIndex[nextSymbol].insert(q’s queryId)
14 endfor
15

/* handle query backtracking */
16 currentList = sequenceIndex[startSymbol]
17 foreach  q in currentList   do

/* Let ‘indexParAnc’ denote the first component of the top element of  
the queryStack */

18     xmlParAncNode  =   globalStack . get(indexParAnc)

19 if  xmlParAncNode.preorder = preorder  then
/* must backtrack query sequence position */

20 queryStack.pop()  /*pop  top element off the queryStack */
21 delete last inserted queryId in sequenceIndex
22 update queryPos 
23 endfor
24 end
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Figure 4: Filtering Algorithm Example

   The ProcessEndSymbol(.) function is described by Algorithm 
2b.  For each query in  the  currentList,  the  filtering algorithm 
first  verifies  that  the  current  endSymbol’s  preorder  number 
equals that of the xmlParAncNode. If there is a match, then the 
queryId  is  deleted  from the  start-symbol’s  and  end-symbol’s 
lists in the sequenceIndex. If the end of the query sequence is 
reached, then the query is reported as a match. Otherwise, the 
next  symbol  is  added  to  the  sequenceIndex.  At  times, 
backtracking to a previous query sequence position is required 
due  to  a  false  match  (lines  16-23).  The  sequenceIndex  is 
probed for the start-symbol and a list  of queryIds is retrieved. 
For each query in currentList, the top entry of the queryStack is 
retrieved and the first  component, referred to as indexParAnc, 
is  used to retrieve the xmlParAncNode from the globalStack. 
The  xmlParAncNode’s  preorder  is  compared  to  the  current 
endSymbol’s  preorder.  If  there  is  a  preorder  match,  then 
backtracked is performed by the following steps. First,  the top 
entry is  popped  off the  queryStack.  Second,  the  last  inserted 
queryId  is  deleted  from  the  sequenceIndex,  and  lastly  the 
queryPos is updated to indicate the new position in the query 
sequence.  
   Below, we illustrate the execution of our filtering algorithm 
with the XML tree T and twig patterns  Q1 and Q2 shown in 
Figure 1.
Example  2: In  Figure  4(a),  the  ProcessStartSymbol(.)  is 
invoked for ‘Sa’ and the sequenceIndex contains Q1 and Q2  for 
key  ‘Sa’.  The  ‘level-consistent’  property  is  automatically 
satisfied  since the queryPos points  to the  first  symbol  in  the 
query sequence. Thus, the subsequence search for both Q1 and 
Q2 is  advanced.  First,  the  next  symbol in the query sequence 
(‘Sb’  for  both  Q1 and  Q2)  is  retrieved  and  the  queryIds  are 
inserted into the sequenceIndex for that key. Second, the index 
of the startSymbol in the global stack (the index is ‘0’) and the 
queryPos (the queryPos is ‘0’) are inserted into the queryStack, 
thus  the  tuple  (0,0)  is  pushed  to  the  Q1 and  Q2 queryStack. 
Lastly,  the  queryPos of Q1 and  Q2 is  incremented  by 1.  The 
algorithm proceeds to process XML nodes (Sb,1,1) and (Sc,2,2) 
in Figures 4(b) and 4(c). 

   In Figure 4(d), the ProcessEndSymbol(.) is invoked for ‘Ec,’ 

and the sequenceIndex contains Q1 and Q2 for key ‘Ec’. The top 
ordered  pair  in  the  Q1 and  Q2 queryStack is  (2,2).  The  first 
component of the pair is used to retrieve the xmlParAncNode in 
the global stack, thus, (Sc, 2,2) is retrieved. The preorder of the 
current  endSymbol  and  xmlParAncNode  match,  thus,  the 
search for both Q1 and Q2 is  advanced. The queryIds,  Q1 and 
Q2,  are  deleted  from  the  list  of  ‘Sc’  and  ‘Ec’  in  the 
sequenceIndex. The next symbol in the sequence of Q1 and Q2 

is  ‘Sg’ and ‘Eb’,  respectively.  The queryIds are inserted into 
the  sequenceIndex  for  their  corresponding keys.  For  both  Q1 

and  Q2,  the  top  entry is  popped  off the  queryStack  and  the 
queryPos is incremented by 1. 
   In Figure 4(e), the ProcessEndSymbol(.) is invoked with end-
label ‘Eb’. Q2 is retrieved and the preorder check  is verified, 
thus Q2’s search is advanced. First,  the top element is popped 
off Q2’s queryStack.  Second, Q2’s queryPos is incremented by 
1.  Lastly,  Q2 is  deleted  from the  sequenceIndex list  for keys 
‘Sc’  and  ‘Ec’.  Note  that  backtracking  of Q1 occurs  as  well. 
After  processing  Q2,  the  sequenceIndex  is  probed  for  the 
corresponding  start-symbol  ‘Sb’,  and  Q1  is  retrieved.  The 
preorder check returns a match, thus, indicating that Q1 should 
be backtracked. Thus, the Q1 queryStack is popped, queryId Q1 

is  deleted  from the  sequenceIndex  list  for key ‘Sg,’  and  the 
Q1’s  queryPos  is  backtracked  to  1.   In  Figure  4  (f  –  i)  the 
algorithm proceeds as described by Algorithm 2. In Figure 4(j), 
the last query sequence symbol of Q2 is matched and thus Q2 is 
reported  as  a  match.  Q1,  however,  is  not  reported  as  match 
because the end of the  query sequence is  not reached.  Please 
note (Sd,3,2), (Ed,3,2), (Sk,7,2) and (Ek,7,2) are not shown in the 
Figure 4 since the state of the structures does not change.

   Example  2  shows  the  execution  of  the  basic  filtering 
algorithm for non-recursive XML document. If recursion occurs 
in the XML documents,  multiple  subsequence ‘searches’  may 
be initiated over each query sequence. The data structures and 
the  algorithm  steps  were  slightly  modified  in  the  final 
implementation of the  algorithm to process  multiple  searches 



for  each  query sequence.  For  each  query search  initiated,  a 
queryStack and queryPos is maintained as before. The entries 
inserted  into  the  sequenceIndex  are  extended  to  include  the 
search ID, thus, for each key the sequenceIndex will contain a 
list of ordered pairs that contains the queryId and searchId. The 
ProcessStartSymbol(.)  was slightly modified to initiate  a new 
search  when  a  recursive  start-symbol  is  encountered.  The 
filtering  algorithm  will  first  verify  that  the  level-consistent 
property holds. If the level-consistent property is satisfied, then 
a new search is initiated and its corresponding queryStack and 
queryPos  are  updated  to  denote  the  current  position  of  the 
search  in  the  query  sequence.  The  other  operations  of  the 
filtering  algorithm  are  maintained  with  the  exception  that 
multiple  searches must  be initiated  as  recursive elements  are 
encountered.

4. EXPERIMENTAL RESULTS
   In our  experiments,  we  compared  the  performance of our 
system  to  that  of  YFilter[5]  and  FiST[7].  We  utilized  the 
YFilter  Java  implementation  provided  by  the  authors.  We 
implemented FiST and NETS in Java as well. All experiments 
were performed on a Quad Core 2.66GHz processor with 8GB 
of  memory running  Linux  Red  Hat.  We  used  the  synthetic 
Sigmod [6] dataset for our experiments. We also generated twig 
patterns  using  the  XPath  generator  available  in  the  YFilter 
package.  The  element  names  were  chosen  from  uniform 
distribution and the max depth of a twig pattern was fixed at 7. 
The number of branches in the  twig patterns  was fixed to 3, 
and the probability of ‘*’ and ‘//’ was fixed to 50 percent.
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   Figure 5 compares  the performance of our filtering system 
with that of YFilter and FiST. In Figure 5(a), the document size 
was  fixed  to  50KB  and  the  numbers  of  twig  queries  were 
varied  from  25,000  to  200,000  in  steps  of  25K.  For  25K 
queries, all three methods perform comparably well,  however, 
as  the  number  of twig  patterns  were  increased,  the  filtering 
time for FiST and YFilter increase dramatically. In Figure 5(b), 
the number of queries was fixed to 200,000 and the document 
size was varied from 10KB to 50KB. For 10KB case, all three 
methods  yielded  comparable  results.  The  performance 
improvement  of NETS was noticed as the document size was 
increased to 50KB.  

   The  performance  improvement  achieved  by  the  NETS 
approach is  due  to  two reasons.  First,  our  filtering  approach 
employs holistic filtering of the query sequences, thus a match 
or a dismissal of a particular query twig can be made earlier in 
the filtering process. Second, our filtering approach filters false 
matches on-the-fly, thus avoiding an expensive post-processing 
phase.  We  conclude  that  our  approach  provides  an  efficient 
filtering algorithm that  is  scalable  in terms  of the  number of 
user profiles and the size of the XML document. 

5. CONCLUSION
   We presented an XML-based filtering system that uses a new 
sequence encoding (NETS) for both the streaming documents 
and query profiles.  Using NETS we provided a necessary and 
sufficient  condition  for  a  query profile  to  have  a  match  in  a 
given document.  An important  property of our system is  that 
false  positives  and  false  dismissals  are  eliminated  on-the-fly 
with  a  single  scan  of the  streaming document.  Experimental 
evaluation  showed that  NETS filtering provided  performance 
improvements  in  comparison  to  state-of-the-art  filtering 
systems.  We  plan  to  explore  NETS  encoding  for  the  full-
fledged case that reports the positions of all query matches in a 
streaming  XML  document.  Moreover,  we  will  explore  the 
benefits of this  encoding for traditional  structural  XML query 
processing.  
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