
PrivatePond: Outsourced Management of Web Corpuses

Daniel Fabbri
dfabbri@umich.edu

University of Michigan

Arnab Nandi
arnab@umich.edu

University of Michigan

Kristen LeFevre
klefevre@umich.edu

University of Michigan

H.V. Jagadish
jag@umich.edu

University of Michigan

ABSTRACT
With the rise of cloud computing, it is increasingly attractive
for end-users (organizations and individuals) to outsource
the management of their data to a small number of large-
scale service providers. In this paper, we consider a user who
wants to outsource storage and search for a corpus of web
documents (e.g., an intranet). At the same time, the corpus
may contain confidential documents that the organization
does not want to reveal to the service provider.

While past work has considered the problems of secure
keyword search and secure indexing, all of the proposed tools
require significant modifications to existing search engines
and infrastructure. In this paper, we propose a system called
PrivatePond, which allows confidential outsourced web search
using an unmodified search engine. The system is built
around the central idea of a secure indexable representa-
tion, which is attached to each document in the corpus, and
constructed with the goal of balancing confidentiality and
searchability. In addition, a secure local proxy is used to
provide transparency to the end-user.

While the idea of a secure indexable representation is very
general, we propose a preliminary instantiation of this idea,
which provides practical confidentiality. In addition, an ex-
perimental evaluation indicates that this indexable represen-
tation can provide high-quality search and ranking, similar
to what is available using the unmodified corpus.

1. INTRODUCTION
In the era of cloud computing, it is increasingly common

for individuals and organizations alike to outsource their
data management to a small number of centrally-managed
highly-scalable service providers. In this paper, we consider
an end-user (organization or individual) who wants to out-
source storage and search for a corpus of confidential web
documents (i.e., a set of text or HTML pages connected to
one another by hyperlinks).

This problem arises in a variety of settings. As a con-
crete example, consider an organization that would like to
outsource management of its intranet to a third-party ser-

Supported in part by NSF grant IIS-0438909, a gift from Yahoo!, and a
seed grant from the University of Michigan.

Copyright is held by the author/owner.
Twelfth International Workshop on the Web and Databases (WebDB 2009),
June 28, 2009, Providence, Rhode Island, USA.

vice provider. This is attractive for the organization because
it saves the time, money, and human resources that are re-
quired to manage the infrastructure in-house. Instead, users
within the organization can be authenticated internally, and
their requests re-directed to the service provider. For small
companies, this is also simpler and less-expensive than, for
example, purchasing a Google search appliance [1]. In or-
der for this setup to be practical, however, the clear chal-
lenge is security. Corporate intranets often contain sensitive
and proprietary documents, information that should not be
shared directly with an external service provider.

We propose a novel system called PrivatePond, which was
designed with the goal of allowing an end-user to create,
store, and search a corpus of web documents, using an un-
trusted service provider, and without compromising the con-
fidentiality of the documents in the corpus. We deliberately
sought out a pragmatic system design, identifying the fol-
lowing practical requirements:

1. Existing infrastructure: The system should be able
to leverage existing web search and information re-
trieval infrastructure (e.g., indexing and ranking) with-
out modification.

2. Confidentiality: The system should provide practi-
cal confidentiality guarantees. In particular, the ser-
vice provider is not trusted to see the documents in
the original corpus (in unencrypted form).

3. Search quality: The system should leverage the many
years of research in web search and IR ranking algo-
rithms in order to provide precision, recall, and rank-
ing quality similar to standard (insecure) search.

4. Minimal overhead: The system should minimize
client-side pre-processing and post-processing costs. In
the pathological case, an end-user could simply encrypt
his entire private corpus (e.g., as a BLOB), and store
it with the service provider. However, each time the
end-user wants to perform a search, he has to fetch
the encrypted BLOB, decrypt it on the client side,
and then perform the search locally. This approach
is unsatisfactory because it requires significant client-
side post-processing, and it fails to leverage the service
provider’s existing search infrastructure.

5. Transparency: The system should provide transpar-
ent and seamless interactions with the end-user.

Secure

Indexable

Representation

E(D)

(Unmodified) Search Engine

Local Proxy

User Search

Keyword query Q

Q’

Ranked Result

Document(s) D

E(D)

Service

Figure 1: PrivatePond Architecture

1.1 Related Work
A significant body of related work has focused on two key

problems that are closely related to ours: securely perform-
ing boolean keyword search on (one or more) encrypted doc-
uments and secure inverted indexes for document retrieval
and ranking.

Song et al. [21] presented the first cryptographic scheme
for securely performing keyword search on one or more out-
sourced documents. The protocol is based on stream ciphers,
and provides very rigorous security guarantees (specifically,
the untrusted search provider learns nothing about the docu-
ments except the search results). However, to search a single
document of length n requires O(n) operations, which means
that the techniques do not practically scale to large corpuses.
The work also only considers boolean keyword search, rather
than web and IR-style search and ranking (e.g., PageRank
or TF-IDF). Boneh et al. developed cryptographic tools for
secure keyword search in public key encryption [5].

Recently, there has also been significant interest in de-
veloping techniques to secure inverted indexes (for search-
ing a corpus of private documents). However, each of the
proposed systems and indexing structures require significant
modifications be made to the existing indexing and search
infrastructure.

Among the first secure indexing tools, the µ-Serve system
was developed at IBM to index access-controlled documents
distributed over an intranet [4]; the system provides a cen-
tralized index based on Bloom filters, which responds to
keyword queries by returning a superset list of documents
containing the key terms. Goh [9] also developed a secure
index using Bloom filters, making somewhat stronger cryp-
tographic guarantees, and Chang and Mitzenmacher [7] also
developed an encrypted keyword index. In addition to re-
quiring new infrastructure, none of these proposals consid-
ered IR- or web-style result ranking.

More recently, the Zerber system [24, 25] was proposed,
also with the goal of securely searching access-controlled
documents within a corporate intranet. Like our work, Zer-
ber considers a statistical attack based on document frequen-
cies, and makes a probabilistic guarantee (r-confidentiality)
[24]. Zerber also supports IR-style ranking based on term
frequencies (TF) [25]. However, the mechanism used to en-
force the statistical privacy requirement (merging posting
lists) still requires modifications to the indexing infrastruc-
ture. Work by Swaminathan et al. [22] also provides se-

cure ranking using TF, but the solution is based on pre-
computing each term frequency, and storing these in en-
crypted form as part of this index, thus requiring significant
modifications to the index as well as search processing.

In addition to text and web data, recent research has also
considered security problems that arise when outsourcing re-
lational databases to untrusted service providers. Hacigümüş
et al. describe a scheme for evaluating SQL queries on en-
crypted relational data, which partitions the query plan into
pieces, some of which are evaluated by the service provider,
and some by the client [11]. Agrawal et al. developed an
order-preserving encryption scheme aimed at improving the
efficiency of range queries in this setting [2]. Much work
has also focused on guaranteeing query result integrity and
completeness in this setting [8, 14, 18, 19, 23].

Finally, research has developed techniques for controlling
access to published databases using cryptography [10, 15],
but this work did not consider searching or querying the
encrypted data.

1.2 Contributions
In this paper, we present the design, implementation, and

evaluation of PrivatePond. The system is highlighted by the
following important features:

• The system is built around a novel, pragmatic, and generic
system architecture, described in Section 2, which does
not require any modifications to existing search engine in-
frastructure (i.e., indexing and search mechanisms). A key
concept in the proposed architecture is to associate with
each document a secure indexable representation, which is
intended to balance the goals of searchability and confi-
dentiality. In addition, the architecture includes a secure
local proxy, which hides changes in the search workflow
from the end-user.

• We provide a practical instantiation of the secure index-
able representation in Section 3, which we analyze both
in terms of security and searchability.

• Finally, we describe the results of an extensive experimen-
tal evaluation in Section 4. In particular, the experiments
indicate that by using PrivatePond (and the secure index-
able representation) it is possible to achieve both practical
confidentiality and high-quality search.

2. SYSTEM DESIGN
This section describes our basic architecture for outsourc-

ing storage and search for a corpus of web documents. We
consider the setting in which the service provider is trusted
to maintain the integrity of outsourced data, and to reliably
answer queries correctly. However, the service provider is
not trusted to maintain the confidentiality of the corpus.

Consider an end-user with a corpus of web data C =
({D1, ..., Dn}, {L}), where D1, ..., Dn are HTML documents
and {L} is a set of hyperlinks. When outsourcing corpus
C, we create an alternative representation of C (denoted
C′) with the goal of protecting confidential information in
C while simultaneously supporting search using the unmod-
ified search architecture.

We create C′ from C in the following manner. First, we
would like to fully recover each document D, while hiding
its content from the service provider. This is accomplished
by encrypting the document to produce E(D).1 Of course,
1E() can be any symmetric-key encryption algorithm, where

E(D) is not searchable. For this reason, we also create an ad-
ditional indexable representation, I(D), for each document
D in the corpus. I(D) is attached or appended to E(D) to
allow the search engine to index and search the data, while
limiting the information revealed about D. In general, I(D)
will be some encrypted form of the words in the document;
clear text is unacceptable as confidential information would
be released. Lastly, we produce a new set of links L′, which is
a subset of L, that contains all links between the documents
in the corpus; external links are stored within the encrypted
documents, but are not available for search. The resulting
corpus C′ = ({(E(D1), I(D1)), ..., (E(Dn), I(Dn))}, {L′}) is
then given to the service provider, where it can be indexed
and searched. We present a particular example of an index-
able representation in Section 3.

Figure 1 shows the basic system architecture. The service
provider’s search engine remains unchanged, but a proxy is
inserted between the end-user and the search engine. The
proxy is placed within the end-user’s trusted computing plat-
form (e.g., as part of the browser or in a trusted web do-
main), stores the key for encryption and decryption and is
responsible for modifying keyword queries so that the queries
issued to the search engine are consistent with the indexable
representations I(D). When a query Q is issued, the query
is first sent to the proxy, which modifies the query, and
sends the new query Q′ to the service provider. The ser-
vice provider uses an unmodified search engine to retrieve
a ranked list of documents. The proxy then decrypts the
encrypted representation of the documents and presents the
text to the user.

This architecture is general, and we have intentionally left
the idea of an indexable representation open. Various index-
able representations are possible, each with its own security
guarantees and impact on search quality. In the next sec-
tion, we describe a particular instantiation of this idea.

3. SAMPLE INDEXABLE REPRESENTATION
The architecture described in the previous section is very

general. In this section, we describe a sample indexable
representation I(D). Of course, the goals are two-fold. The
indexable representation should protect the confidentiality
of the original document. (In particular, we want to prevent
an attacker from learning the original value of any token in
I(D).) Simultaneously, we want to preserve the quality of
the results for searches evaluated on C′.

3.1 Constructing a Confidential Indexable
Representation

We considered various techniques to produce a secure and
searchable representation. As a simple strawman, an in-
dexable representation could be created by encrypting each
token (i.e., a whitespace-delineated word). Specifically, for
each document Di = [T1, ..., TN] in the corpus, where T is
a token in the document, we could produce an indexable
representation I(Di) = [E(T1), ..., E(TN)]. This construc-
tion prevents an adversary (like a malicious service provider)
from easily learning the original tokens since they are no
longer presented in the clear. However, the indexable rep-
resentation is still vulnerable to attacks that utilize back-
ground information about the language. In the remainder

each end-user is in possession of private key k. If the end-
user is concerned about revealing the length of each docu-
ment, he can also include additional padding in each E(D).

of this section, we describe such attacks, as well as some
practical modifications that can be made to the indexable
representation.

Attacks on a Single Indexable Representation Unfor-
tunately, even in its encrypted form, an adversary may be
able to learn the value of a token in the indexable representa-
tion I(Di) using a language model that contains information
about the structure and frequency of tokens in documents.

We consider two specific attacks on a single indexable
representation using the strawman. First, since the order
of tokens is maintained, the adversary could use a natural
language analysis (e.g. <noun> <verb> <noun>) to de-
termine possible values of each encrypted token. Thus, we
remove the order of tokens in the indexable representation.

Second, even with the order of tokens removed, the in-
dexable representation is still vulnerable to attacks. In par-
ticular, since the frequency of the tokens in a document is
maintained, and the adversary has knowledge about the rel-
ative frequency of tokens in the language, the adversary can
sometimes deduce the values of some encrypted tokens. For
example, if the adversary knows that the word the is the
most common word in the language and the encrypted token
t is the most frequent in the outsourced indexable represen-
tation, then the adversary can determine that token t has
value the. For example, Kumar et al. show that a hashed
data set is vulnerable to attacks that consider the frequency
of tokens in a document [13]. Therefore, we only allow each
token to occur once per indexable representation.

To prevent these attacks on a single indexable representa-
tion, we reduce the amount of information in I(Di). Specif-
ically, given a document Di in the corpus C, we produce an
indexable representation I(Di) = {E(Tj), E(Tk), ..., E(Tl)}
that is an unordered set of tokens (without duplicates). This
construction prevents the previous two attacks since the to-
kens are not organized in any specific order and each unique
value occurs at most once.

Attacks on a Corpus of Indexable Representations
The indexable representation described above protects the
confidentiality of the indexable representation for a single
document. Unfortunately, the adversary may still lever-
age the aggregate information from all documents in the
outsourced corpus C′. Specifically, the adversary can con-
struct the frequency of tokens in the corpus by analyzing
the document frequency of each token (i.e., the number of
documents the token occurs in). Then, using the document
frequency and the background information about the rela-
tive frequency of tokens in the language, the adversary can
determine the value of encrypted token in the indexable rep-
resentation; this is the same attack that can be performed
on a single indexable representation if token frequencies are
maintained.

In the worst case, we can take a pessimistic view, and
suppose that the adversary knows the document frequency
of each token in the corpus. In this case, a privacy breach
could occur if any token has a unique document frequency
in C′. More generally, we define the bin width (BW) as the
number of tokens with the same document frequency in the
outsourced corpus and require that each token have the same
document frequency of at least bin width− 1 other tokens.
To limit the adversary’s ability to determine the value of an
encrypted token, we modify the contents of the corpus.

One way to produce a secure outsourced corpus C′ is to

increase the document frequency of tokens that already exist
in the corpus C. Specifically, we sort the tokens by document
frequency order. Then, we process the tokens in decreasing
order. If token Ti does not have the required bin width, we
add the next token with lesser document frequencies, Ti−1,
randomly to other documents’ indexable representation un-
til token Ti−1 has the same document frequency as token
Ti. We repeat this process until the corpus is secured. For
example, if the original corpus has three tokens {a, b, c} with
document frequencies {1, 2, 3} and a bin width = 3, then we
would add token a to two other documents and token b to
one other document. This padding procedure is performed
during a pre-processing step, and the user can specify the
amount of binning that is required.

3.2 Search Quality Analysis
Unfortunately, securing the data in the indexable repre-

sentation limits our ability to conduct conventional search
and ranking. By eliminating the order of terms (viewing
documents as a set-of-words), we have eliminated the pos-
sibility of conducting proximity-based searches. Similarly,
because we eliminated duplicate terms from each indexable
representation, we are no longer able to compute single-
document term-frequencies (the TF component of the stan-
dard TF-IDF ranking function). In this case, each TF term
is either 1 or 0.

Similarly, to reduce the likelihood of a language model-
attack across multiple documents, we have chosen to intro-
duce additional terms (padding). As the number of addi-
tional inserted terms increases, we expect that this will in-
troduce additional false positives into even simple boolean
keyword searches. We examine the impact of padding ex-
perimentally in Section 4.

Finally, in web search, ranking is not typically based en-
tirely on document content, but often also on the link struc-
ture of the corpus. Link-based ranking algorithms (e.g.,
PageRank [6]) are unaffected by the set-of-words representa-
tion because we maintain the internal link structure within
the corpus C′; however, the random padding of terms may
introduce false positives if a term is added to a page with a
high page rank.

4. EVALUATION
To evaluate our ideas, we use a sample of the Simple En-

glish Wikipedia (http://simple.wikipedia.org); a collection of
3550 documents with over 10,800 links between them. We
refer to this as the small corpus (Small C). Additionally,
we evaluate the entire Simple Wikipedia corpus; a collection
of over 43,000 documents with over 800,000 links between
them. We refer to this as the large corpus (Large C).

A query workload of approximately 10,000 keyword queries,
ranging from one to three words in length, was generated by
randomly sampling the corpuses to evaluate search quality.

The primary goal of our experimental study was to mea-
sure the impact of the secure indexable representation on
search quality. While performance may be a secondary con-
cern, for our corpus, the time necessary to generate index-
able representations was only a few minutes on a dual core
CPU system with 2GB of RAM, running Red Hat Linux.
We did not see any significant difference in query perfor-
mance between the original and outsourced versions of our
corpus for all bin widths up to 1000.

0 200 400 600 800 1000
Bin Width

0

2

4

6

8

10

12

14

Co
rp

us
 S

iz
e

C'
 /

 C
or

pu
s

Si
ze

 C

Small C
Large C

Figure 2: Corpus Size vs Bin Width

4.1 Effects of Bin Width on Corpus Size
As bin width increases, more tokens are added to doc-

uments in the corpus. In the worst case each document
will contain every word in the corpus (i.e. the vocabulary),
and hence the padded corpus size is equal to |vocabulary| ×
|corpus|. We study the increase in the size of the outsourced
corpus C′ (in tokens) to the original corpus C.

As we can see in Figure 2, the outsourced corpus C′ is
larger than the original corpus when there is no padding
because we add a secure indexable representations to each
document. For larger bin widths and the small corpus, the
outsourced corpus size increases to nearly three times the
size of the original corpus for bin width = 10 and five times
larger for bin width = 100. In contrast the larger corpus
grows at a slower rate as the bin width increases because
less padding is needed to meet the desired bin width.

4.2 Search Quality
We examine the costs of secure search on confidential in-

formation using an unmodified search engine. There is a
tradeoff between securely searching a corpus of documents
and providing the highest search quality. Clearly, the secure
indexable representation impacts search quality since token
frequencies are modified. Next, we evaluate the effects of the
secure indexable representation and the bin width security
requirement on search quality.

4.2.1 Ranking Models
To evaluate the search quality, we test our system with

two families of ranking models.

• Content-Based Ranking: First, we consider an IR rank-
ing model where the score of a document depends on the
contents of the document. Examples include term fre-
quency (TF) and term frequency-inverse document fre-
quency (TFIDF). We study MySQL’s FULLTEXT search
implementation [20] that considers TF of the queried term
and IDF of all the terms in the documents. For the
scope of this paper, we will call this method TFIDF (even
though it is not just simply TF × IDF).

• Global Ranking: Second, we consider a global ranking
model where the score is independent of the contents. We
use PageRank [17] as our global ranking model for our
hyperlinked collection of documents, using d = 0.85.

• Combination of Ranking Models: We expect a prac-
tical and state-of-the-art search system to include a com-
bination of the two ranking models.

Both models have their own sensitivities to the indexable
representation, namely switching to the set-of-words rep-
resentation and the padding of additional words. As dis-
cussed in 3.2, content-based ranking models (such as our

P(10) MAP(10) RP(10)
0.0

0.2

0.4

0.6

0.8

1.0
PR
TFIDF

(a) Search Quality, BW = 1

0 200 400 600 800 1000
Bin Width

0.0

0.2

0.4

0.6

0.8

1.0

P(10)
MAP(10)
RP(10)

(b) TFIDF Search Quality vs BW

0 200 400 600 800 1000
Bin Width

0.0

0.2

0.4

0.6

0.8

1.0

P(10)
MAP(10)
RP(10)

(c) PageRank Search Quality vs BW

Figure 3: Search Quality, Small Corpus

TFIDF variant) consider frequencies of words and the length
of the document as features, both of which are modified
when converting documents to sets-of-words. Additionally,
both models are affected by the padding of additional to-
kens; padded tokens can create false positives for search: a
search for ’x y’ brings up a document with original content
’x’ because ’y’ was added to it.

We assume that each search result contains all terms from
the query (boolean conjunctive search), and that results are
presented in ranked order, starting with results with the
highest ranking score.

4.2.2 Metrics for Search Quality
When we modify our corpus for the purpose of generat-

ing a secure indexable representation, we try to ensure three
key factors: (1) minimize loss of search results, (2) minimize
loss of important (top ranking) search results, and (3) min-
imize loss of ranking information. Next, we describe our
procedure for evaluating the search quality of an indexable
representation.

Given a query, we first determine the list of documents re-
turned when the original (unencrypted) corpus is searched;
we will call this the gold list. Next, we use the same unmod-
ified search engine to search the corpus of indexable repre-
sentations to produce the pond list, and then measure the
difference between the gold list and pond list. For example,
if our original search engine lists documents [p, q, r] as the
top-3 results in ranked order, the indexable representations
may generate [q, s, p] as the top-3. Clearly, r is now missing,
while q and p have changed ranks. We use three metrics to
measure the change in search quality:

• Precision at N (P): First, we measure the number of
documents returned by the gold list that are contained in
the pond list. The precision at N is defined as:

P (N) =
|gold[1,N] ∩ pond[1,N]|

N

where the subscripts specify the set of documents we con-
sider from each list. If every gold document is returned,
the precision is 1.0; if every gold document is missing, the
precision is 0.0. From the example in the previous para-
graph, P (3) = 2

3
, which means intuitively that the pond

list contained two of the top-3 results from the gold list.

• Mean Average Precision (MAP): Second, we use the
metric mentioned in [16] to examine the precision at var-
ious depth for the pond list. The mean average precision
is calculated with:

MAP (N) =

PN
r=1(

|gold[1,N]∩pond[1,r]|
r

× rel(r))
N

where rel(r) is 1 if the rth document in the pond list exists
in the gold list, otherwise 0. Like precision at N, MAP
ranges from 0.0 to 1.0, but punishes the precision score if
documents that are not contained in the top-N of the gold
list are ranked higher than documents in the gold list. For

the example above, MAP(3) =
1
1+0+ 2

3
3

= 5
9
, which is less

than P(3) since document s was ranked higher than p.

• Rank Perturbation (RP): Third, we consider the change
in rank between the gold list and the pond list. We define
the rank perturbation as:

RP (N) = 1−
P gold[N]

i=gold[1] |gi − pi|
N2

where gi is the rank of document i in the gold list and pi

is the rank of document i in the pond list; if a document is
contained in the gold list but is missing from the pond list,
the score for the specific document is N . For the example
above, RP (3) = 1− 2+1+3

9
= 1

3
, which is worse than P(3)

and MAP(3) since rank perturbation takes into account
the change in rank of p and q and that r is missing. We
considered using Spearman’s distance or Kendall’s tau,
however, these metrics are undefined when the gold and
pond lists contain different documents.

4.2.3 Effects of the Secure Indexable Representation
First, we evaluate the search quality for the set-of-words

indexable representation with our query workload. We present
the average score for N = 10 for all metrics. The representa-
tion itself reduces search quality for algorithms that rely on
the frequency of terms in a document, such as TFIDF. For
models that do not use the term frequency, such as PageR-
ank, there is no effect due to the representation.

In Figure 3(a), we analyze the change in search quality for
the TFIDF and PageRank models with the small corpus. We
observe that moving to a set-of-words representation incurs
a drop in quality even with the minimum possible bin width
of 1 for the TFIDF model; P(10) tells us that on average, 2 of
of the gold’s top-10 search results will be beyond the pond’s
top-10, while MAP and RP also show a further decline in
search quality due to differences in ranking. In contrast,
the PageRank model is unaffected as expected; PageRank
returns every document in the gold list.

4.2.4 Effects of Bin Width
We evaluate the change in search quality for TFIDF and

PageRank as the bin width increases. Figure 3(b) and Fig-
ure 3(c) show there is a very slow but gradual loss of qual-
ity as we increase the bin width for both ranking models
because false positives are introduced due to padding docu-
ments with a high PageRank or low document frequency.

P(10) MAP(10) RP(10)
0.0

0.2

0.4

0.6

0.8

1.0
PR
TFIDF

Figure 4: Search Quality, Large C, BW = 1

0.0 0.2 0.4 0.6 0.8 1.0
Weight (w)

0.0

0.2

0.4

0.6

0.8

1.0

P(10)
MAP(10)
RP(10)

Figure 5: TFIDF + PageRank, Small C, BW = 10

4.2.5 Effects of a Larger Corpus
We analyze how search quality changes given a larger data

set. Figure 4 shows that the set-of-words representation for
the large corpus has worse TFIDF search quality than the
smaller corpus (Figure 3(a)); P(10) indicates that six of the
top-10 documents from the gold list are returned on aver-
age. The poorer ranking is a result of having more docu-
ments with the same tokens in their indexable representa-
tions. Like the smaller corpus, the PageRank results are un-
affected by the set-of-words representation. For bin widths
up to 500, the search quality does not decrease; for larger
bin widths, the search quality decreases in a similar manner
to the smaller corpus (Figure 3(b), 3(c)). We do not include
these plots due to space constraints.

4.2.6 Effects of Combining TFIDF and PageRank
In addition to studying the search quality of the two rank-

ing models independently, we present the quality of search
results with bin width = 10 for a combination of the two
models using a weighted sum: (w) · (PageRank) + (1−w) ·
(TFIDF). We consider various values of w and evaluate
the change in search quality on the small corpus.

As expected, we can see in Figure 5 that there is a clear
tradeoff between global ranking such as PageRank and content-
based ranking such as TFIDF. A w of 0.75 misses less than
one document per search on average and can be considered
an acceptable parameter for most search applications.

5. CONCLUSION & FUTURE WORK
We present the PrivatePond architecture, a practical im-

plementation of secure search on confidential information us-
ing an unmodified search engine. We consider the tradeoffs
between data security and search quality when outsourcing
a corpus of documents to a service provider. We examine a
sample indexable representation that is resistant to adver-
sarial attacks, but allows for search quality to be comparable
to that of the original corpus. Alternative indexable repre-
sentations are possible in the PrivatePond architecture with
varying search quality and confidentiality characteristics. In

the future, we will consider the network structure of the cor-
pus as a source of uniquely identifiable information [3, 12].

6. REFERENCES
[1] Google search solutions for business.

http://www.google.com/enterprise/search/gsa.html.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order
preserving encryption for numeric data. In SIGMOD, 2004.

[3] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art
thou r3579x?: anonymized social networks, hidden
patterns, and structural steganography. In WWW, 2007.

[4] M. Bawa, R. Bayardo, and R. Agrawal. Privacy-preserving
indexing of documents on the network. In VLDB, 2003.

[5] D. Boneh, G. Crescenzo, R. Ostravsky, and G. Persiano.
Public-key encryption with keyword search. In Eurocrypt,
2004.

[6] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In WWW, 1998.

[7] Y.-C. Chang and M. Mitzenmacher. Privacy preserving
keyword searches on remote encrypted data. In Applied
Cryptography and Network Security, pages 442–455. 2005.

[8] P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine.
Authentic third-party data publication. In IFIP 11.3
Workshop on Database Security, 2000.

[9] E. Goh. Secure indexes. Cryptology ePrint Archive, 2004.

[10] V. Goyal, O. Pandey, A. Sahai, and B. Waters.
Attribute-based encryption for fine-grained access control
of encrypted data. In CCS, 2006.

[11] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Executing
sql over encrypted data in the database-service-provider
model. In SIGMOD, 2002.

[12] M. Hay, G. Miklau, D. Jensen, D. Towsely, and P. Weis.
Resisting structural re-identification in anonymized social
networks. In VLDB, 2008.

[13] R. Kumar, J. Novak, B. Pang, and A. Tomkins. On
anonymizing query logs via token-based hashing. In WWW,
2007.

[14] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
Dynamic authenticated index structures for outsourced
databases. In ACM SIGMOD, 2006.

[15] G. Miklau and D. Suciu. Controlling access to published
data using cryptography. In VLDB, 2003.

[16] A. Moffat and J. Zobel. Rank-biased precision for
measurement of retrieval effectiveness. ACM Trans. Inf.
Syst., 27(1):1–27, 2008.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web. 1998.

[18] H. Pang, A. Jain, K. Ramamritham, and K. Tan. Verifying
completeness of relational query results in data publishing.
In ACM SIGMOD, 2005.

[19] H. Pang and K. Tan. Authenticating query results in edge
computing. In ICDE, 2004.

[20] A. Singhal, G. Salton, M. Mitra, and C. Buckley.
Document length normalization. Information Processing
and Management, 32(5):619–633, 1996.

[21] D. Song, D. Wagner, and A. Perrig. Practical techniques for
searches on encrypted data. In IEEE Security and Privacy
Symposium, 2000.

[22] A. Swaminathan, Y. Mao, G. Su, H. Gou, A. Varna, S. He,
M. Wu, and D. Oard. Confidentiality-preserving
rank-ordered search. In StorageSS, 2007.

[23] M. Xie, H. Wang, J. Yin, and X. Meng. Integrity auditing
of outsourced data. In VLDB, 2007.

[24] S. Zerr, E. Demidova, D. Olmedilla, W. Nejdl, M. Winslett,
and S. Mitra. Zerber: r-confidential indexing for distributed
documents. In EDBT, 2008.

[25] S. Zerr, D. Olmedilla, W. Nejdl, and W. Siberski. Zerber+r:
Top-k retrieval from a confidential index. In EDBT, 2009.

